吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (4): 409-415.

• • 上一篇    下一篇

基于改进 Faster R-CNN 的钢材表面缺陷检测方法

杨 莉, 张亚楠, 王婷婷, 刘添翼   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2020-09-12 出版日期:2021-07-24 发布日期:2021-07-26
  • 作者简介:杨莉(1979— ), 女, 黑龙江大庆人, 东北石油大学副教授, 主要从事人工智能研究, ( Tel) 86-13634663592 ( E-mail)19696163@ qq. com
  • 基金资助:
    国家自然科学基金资助项目(51404073); 黑龙江省自然科学(青年)基金资助项目(QC2017043); 中国博士后科学基金资 助项目(2018M630335); 黑龙江省博士后面上(一等)基金资助项目(LBH-Z19008); 2017 年度东北石油大学国家基金培育 基金(自然科学类)青年重点基金资助项目(2017PYQZL-15); 东北石油大学省杰青后备人才基金资助项目(SJQH202002)

New Method for Steel Surface Defect Detection Based on Improved Faster R-CNN

YANG Li, ZHANG Yanan, WANG Tingting, LIU Tianyi   

  1. College of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China
  • Received:2020-09-12 Online:2021-07-24 Published:2021-07-26

摘要: 针对传统 Faster R-CNN(Region-Convolutional Neural Networks)检测钢材表面小目标性缺陷性能差的问题, 提出了一种基于改进 Faster R-CNN的钢材表面缺陷检测方法。 首先引入导向锚点候选区域网络(GA-RPN: Guided Anchoring Region Proposal Network)预测锚点的位置和形状, 设计可调节机制解决网络锚点形状偏移量超出感兴趣区域的问题, 从而解决无关特征的影响; 其次, 提出多任务 FPN(Feature Pyramid Network)结构缩短高层特征定位信息映射路径, 并能解决相邻层特征融合再采样的不充分特征融合, 提高小目标检测性能。 将改进的 Faster R-CNN 算法应用于钢材表面缺陷检测。 仿真结果表明, 改进的网络其召回率与准确率都得到提高, 具有更好的检测性能。

关键词: 钢材表面缺陷; , 神经网络; , 小目标检测; , 特征融合

Abstract: Aiming at the problem of poor performance of traditional Faster R-CNN(Region-Convolutional Neural Networks) in detecting small target defects on steel surface, a new method for steel surface defect detection based on improved Faster R-CNN is proposed. First, the GA-RPN(Guided Anchoring Region Proposal Network) is introduced to predict the position and shape of the anchor points, and an adjustable mechanism is designed to solve the problem that the shape offset of network anchors exceed the region of interest, thereby solving the influence of irrelevant features. Then, a multi-task FPN (Feature Pyramid Network) structure is used to shorten the high-level feature location information mapping path, and can solve the insufficient features fusion of adjacent layers features fusion and re-sampling, and to improve the performance of small target detection. The results show that the recall rate and accuracy of the network are improved. Therefore, this method has better performance and can effectively detect steel surface defects.

Key words: surface defects of steel, neural network, small target detection, feature fusion

中图分类号: 

  • TP273