吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (4): 421-429.

• • 上一篇    下一篇

基于 Faster R-CNN 的海域监管预警方法

文莉莉1,2 , 孙 苗2,3 , 邬 满2,4,5   

  1. 1. 广西壮族自治区药用植物园 信息产业办, 南宁 530023; 2. 自然资源部 海洋信息技术创新中心, 天津 300171; 3. 国家海洋信息中心 海洋信息化部, 天津 300171; 4. 广西壮族自治区海洋研究院 信息科, 南宁 530022; 5. 广西大学 电气工程学院, 南宁 530002
  • 收稿日期:2020-11-26 出版日期:2021-07-24 发布日期:2021-08-01
  • 通讯作者: 邬满(1985— ), 男, 湖北黄冈人, 自然资源部海洋信息技术创新中心、 广西壮族自治区海洋研究院正高级工程师, 广西大学博士研究生, 硕士生导师, 主要从事数据挖掘、 深度学习、 智慧海洋等研究, (Tel)86-18176887181(E-mail)250016761@ qq. com。
  • 作者简介:文莉莉(1988— ), 女, 广西桂林人, 广西壮族自治区药用植物园、 自然资源部海洋信息技术创新中心高级工程师, 硕士, 主要从事大数据、 数据挖掘和深度学习研究, (Tel)86-18275775827(E-mail)704663138@ qq. com
  • 基金资助:
     自然资源部海洋信息技术创新中心开放基金重点课题资助项目; 国家自然科学基金资助项目(61763007; 61866007); 广西 科技重大专项基金资助项目(桂科 AA18118025)

Early Warning Method of Sea Area Supervision Based on Faster R-CNN

WEN Lili1,2 , SUN Miao2,3 , WU Man2,4,5   

  1. 1. Information Industry Office, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; 2. Technology Innovation Center of Marine Information, Ministry of Natural Resources, Tianjin 300171, China; 3. Marine Information Department, National Marine Data Information Center, Tianjin 300171, China; 4. Information Department, Guangxi Academy of Oceanography, Nanning 530022, China; 5. School of Electrical Engineering, Guangxi University, Nanning 530002, China
  • Received:2020-11-26 Online:2021-07-24 Published:2021-08-01

摘要: 针对传统实地调查取证、 人工对比遥感影像等高成本、 低效率的海域监管方式无法满足当前监管需求的问题, 利用星遥感影像和深度学习算法提出了一种针对大范围的、 快速动态的用海综合管控手段。 依托海量影像及多源海洋基础数据, 在研究多规融合分析的基础上, 基于 Faster R-CNN(Regions with Convolutional Neural Networks features)算法, 建立人工智能识别模型, 实现对海上目标、 非法用海占海与破坏生态环境行为的自动识别与预警。 分析了 Faster R-CNN 算法原理, 采用不同年份、 不同卫星、 不同分辨率的卫星遥感数据, 针对 5 种常见海洋目标, 建立了 10 000 多张图片样本库, 利用 VGG16 和 RestNet101 两种网络模型进行了训练和测 试。 实验结果表明, RestNet101 模型计算量略大于 VGG16 模型, 但其具有更强的复杂特征提取能力, 更适合于复杂海上目标的检测与识别; 对本文中特定的 5 类目标总体识别准确率在 80% 以上。 利用该模型结合海洋规划数据, 实现了大范围海域的快速自动监管和非法用户行为预警, 为海洋智能化监管提供了一种新思路。

关键词: Faster R-CNN 算法; , 卷积神经网络; , 多规融合; , 遥感影像; , 海域监管

Abstract: Aiming at the problem that the traditional high-cost and low-efficiency sea area supervision methods such as field investigation and evidence collection and manual comparison of remote sensing images can not meet the current regulatory requirements, we use satellite remote sensing images and deep learning algorithm to propose a comprehensive control method for large-scale, fast and dynamic sea use. Based on massive images and multi-source marine basic data, multi planning fusion analysis, fast R-CNN(Regions with Convolutional Neural Networks features) algorithm, an artificial intelligence recognition model is established to realize automatic recognition and early warning of maritime targets, illegal sea occupation and ecological environment damage. We analyze the principle of fast R-CNN algorithm, uses satellite remote sensing data of different years, different satellites and different resolutions, establishes more than 10 000 image sample database for five kinds of common marine targets, and conducts training and testing with VGG16 and RestNet101 network models. The experimental results show that the computational complexity of RestNet101 model is slightly larger than that of VGG16 model, but it has stronger ability of complex feature extraction, and is more suitable for the detection and recognition of complex sea targets; the overall recognition accuracy of the five types of targets is more than 80% . Combined with the marine planning data, the model realizes the rapid automatic supervision and early warning of illegal user behavior in large-scale sea area, which provides a new idea for the intelligent marine supervision.

Key words: faster regions with convolutional neural networks features( Faster R-CNN), convolutional neural network, multi planning fusion, remote sensing image, sea area supervision

中图分类号: 

  • TP312