吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (5): 539-545.

• • 上一篇    下一篇

基于集成卷积小波极限学习的绝缘子故障检测

王 宁, 苏 皓, 王伟成, 陈明虎, 郭淞赫, 薛祥凯   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2020-12-30 出版日期:2021-10-01 发布日期:2021-10-01
  • 通讯作者: 苏皓(1996— ) , 男, 河北张家口人, 东北石油大学硕士研究生, 主要从事基于激光干涉的电机参数测量研究, (Tel)86-15004585195(E-mail)GGsuhao@foxmail.com。
  • 作者简介:王宁(1995— ) , 男, 黑龙江佳木斯人, 东北石油大学硕士研究生, 主要从事计算机视觉研究, ( Tel)86-15045680765(E-mail)wn5201314vip@163.com

Insulator Fault Detection Based on Integrated Convolutional Wavelet Limit Learning

WANG Ning, SU Hao, WANG Weicheng, CHEN Minghu, GUO Songhe, XUE Xiangkai   

  1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, China
  • Received:2020-12-30 Online:2021-10-01 Published:2021-10-01

摘要: 针对绝缘子因分布位置较远、背景复杂而导致传统方法无法精准并高效识别其故障的问题, 提出一种基 于集成卷积小波极限学习神经网络(ECWELNN: Ensemble Convolution Wavelet Extreme Learning Neural Network) 的绝缘子故障检测方法。 首先通过安装在无人机上的工业级摄像机采集现场的绝缘子图像数据并进行预处理; 其次将卷积神经网络、自动编码器、极限学习机和小波函数的优势结合, 构造集成卷积小波极限学习神经网 络, 并逐层堆叠建立多个深层神经网络; 最后将绝缘子图像样本输入多个深层神经网络进行自动特征学习, 将 预测结果进行集成并输出最终的故障检测结果。 通过实验对比验证了小波函数作为极限学习机网络模型中的 激活函数在绝缘子识别领域中的优势。 实验结果表明, 该方法的平均故障检测准确率达到了 98. 49% , 标准差 仅 0.20, 相比其他方法在图像特征提取和故障检测准确率方面更具优势, 适用于绝缘子故障的自动识别。

关键词: 绝缘子; , 极限学习机; , 神经网络; , 故障检测; , 卷积神经网络; , 集成学习

Abstract: An insulator fault detection method based on ensemble convolution wavelet extreme learning neural network is proposed because the traditional methods can not accurately and efficiently identify the faults of insulators due to the remote distribution position and complex background. Firstly, the insulator images data is collected and preprocessed by industrial camera installed on UAV (Unmanned Aerial Vehicle). Secondly, the ensemble convolution wavelet extreme learning neural network is constructed by combining the advantages of convolution neural network, auto encoder, extreme learning machine and wavelet function. Finally, the insulator images samples are fed into multiple deep neural networks for automatic feature learning. The prediction results are assembled and the final fault detection results are output. The experimental results show that the average fault detection accuracy of the proposed method reaches 98. 49% and the standard deviation is only 0. 20. Compared to other methods, it has more advantages in image feature extraction and fault detection accuracy, and is suitable for automatic identification of insulator faults.

Key words: insulator, extreme learning machine, neural network, fault detection, convolution neural network; ensemble learning

中图分类号: 

  • TM216