吉林大学学报(信息科学版) ›› 2021, Vol. 39 ›› Issue (5): 596-601.

• • 上一篇    下一篇

基于最小置信度的嵌入式软件成熟度静态分析

陈会平   

  1. 四川工业科技学院 电子信息与计算机工程学院, 四川 德阳 618500
  • 收稿日期:2021-05-26 出版日期:2021-10-01 发布日期:2021-10-01
  • 作者简介:陈会平(1973— ), 男, 四川德阳人, 四川工业科技学院副教授, 主要从事大数据、软件开发研究, (Tel)86-13890238920(E-mail)184470836@qq.com。
  • 基金资助:
    四川省民办教育协会(研究中心)基金资助项目(MBXH20YB370)

Static Analysis Algorithm of Embedded Software Maturity Based on Minimum Confidence

CHEN Huiping, CHEN Jingyue   

  1. College of Electronic Information and Computer Engineering, Sichuan Institute of Industrial Technology, Deyang 618500, China
  • Received:2021-05-26 Online:2021-10-01 Published:2021-10-01

摘要: 由于已有算法未能在静态分析过程中加入最小置信度原则和大数据技术, 导致静态分析结果不准确和费 用较高等问题, 提出一种基于最小置信度的嵌入式软件成熟度静态分析算法。 将最小置信度作为隶属准则, 通过量分权重和满意度对嵌入式软件成熟度静态分析思想进行评价, 构建评价指标体系。 使用大数据技术对 各项软件成熟度评价指标进行标准化和无量纲化处理, 获取有效指标。 结合嵌入式软件成熟度评价维度, 利用 属性数学原理, 在专家调查问卷形式下对评价指标的测度进行计算分析, 组建嵌入式软件成熟度静态评估模 型, 通过模型完成软件成熟度的静态分析。 仿真实验结果表明, 所提算法能获取高准确性的嵌入式软件成熟度 静态分析结果, 同时静态分析费用也能得到有效降低。

关键词: 最小置信度,  , 大数据,  , 嵌入式软件成熟度,  , 静态分析算法

Abstract: Because the existing algorithms fail to incorporate the principle of minimum confidence and big data technology in the static analysis process, the static analysis results are inaccurate and costly. A static analysis algorithm for embedded software maturity based on minimum confidence and big data is proposed. The minimum confidence is used as the subordination criterion. The static analysis ideas of embedded software maturity are evaluated by weight and satisfaction, and evaluation indicators are constructed. Big data technology is used to standardize and non-dimensionalize various software maturity evaluation indicators to obtain effective indicators. Combining the evaluation dimensions of embedded software maturity, using attribute mathematics principles, the evaluation index measurement is calculated and analyzed in the form of expert questionnaires, a static evaluation model of embedded software maturity is built, and the static analysis of software maturity is completed through the model. The simulation experiment results show that the proposed algorithm can obtain high-accuracy static analysis results of embedded software maturity, and the static analysis cost can also be effectively reduced.

Key words: minimum confidence, big data, embedded software maturity, static analysis algorithm

中图分类号: 

  • TP311. 5