吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (2): 282-287.

• • 上一篇    下一篇

基于 LSM 树的云存储数据差异性存储节能优化算法

梁少林   

  1. 四川文理学院 数学学院, 四川 达州 635000
  • 收稿日期:2021-06-21 出版日期:2022-06-11 发布日期:2022-06-12
  • 作者简介:梁少林(1986— ), 男, 河南安阳人, 四川文理学院讲师, 主要从事计算机辅助教育研究, (Tel)86-15508210765(E-mail)271126238@ qq. com.
  • 基金资助:
    四川省 2019 年线上线下混合式一流本科课程基金资助项目(Excel 在财务中的应用); 四川文理学院 2020 年度一流课程 基金资助项目(2020KCC005)

Optimization of Cloud Storage Data Based on LSM Tree

LIANG Shaolin   

  1. College of Mathematics, Sichuan University of Arts and Science, Dazhou 635000, China
  • Received:2021-06-21 Online:2022-06-11 Published:2022-06-12

摘要: 为解决因大数据环境不断扩大而导致的信息储存高功耗、 低效率问题, 提出一种基于 LSM(Log Structured Merge)树的数据云储存节能优化算法。 根据数据存储的数量、 大小、 网络带宽及链路长度等信息差异性特点, 建立数据分片储存判定模型, 计算数据在发送和接收时的时间延迟, 对比既定参数判定是否需要分片储存。 对需要分片储存的数据, 通过时间延迟阈值明确在各个节点下所需的服务器功耗、 静态功耗以及动态功耗, 对 平均功耗较大的数据实施分类传输, 完成存储节能优化。 仿真实验证明, 采取所提方法后的云储存环境中冗余 数据量明显减少, 且处理稳定性较强, 平均耗用低于设定阈值, 整体算法性能较为优异。

关键词: LSM 树; , 网络带宽; , 链路长度; , 静态功耗; , 冗余数据

Abstract: In order to solve the problem of high power consumption and low efficiency of information storage caused by the enlargement of large data environment, a data cloud storage optimization algorithm based on LSM (Log Structured Merge) tree is proposed. According to the difference of the quantity and size of data storage, network bandwidth and link length, the judgement model of data fragmentation storage is established, and the time delay of data sending and receiving is calculated. For the data that need to be stored in segments, the server power consumption, static power consumption and dynamic power consumption under each node are determined by the time delay threshold, and the data with high average power consumption are transmitted by category to achieve storage and energy saving optimization. Simulation results show that the proposed method can reduce the amount of redundant data in cloud storage environment, and the processing stability is strong, the average consumption is lower than the set threshold.

Key words: log structured merge ( LSM) tree; , network bandwidth; , link length; , static power consumption; , redundant data

中图分类号: 

  • TP319