吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (3): 371-378.
任 爽, 田振川, 林光辉, 杨 凯, 商继财
REN Shuang, TIAN Zhenchuan, LIN Guanghui, YANG Kai, SHANG Jicai
摘要: 针对电机滚动轴承信号特征人工提取困难、故障分类效果差的问题,利用传统GoogLeNet模型单元与稠密连接思想结合,提出一种改良的GoogLeNet卷积神经网络结构。将提出的改良模型应用于电机滚动轴承的故障诊断试验,对原数据分组处理并贴上标签后,直接输入到改良模型中进行训练,最后将测试集输入到训练好的模型中,测试其分类准确率。由于诊断过程不需要进行人工特征提取,从而避免了人工提取故障特征时的困难和带来的误差,大大简化了故障识别过程,证明了改良GoogLeNet模型在故障诊断中的可行性。将提出的模型与传统GoogLeNet模型和其他典型模型做对比,结果表明,改良GoogLeNet卷积神经网络模型具有精确度高、特征提取能力强、收敛速度快、表现稳定的特点。
中图分类号: