price forecast, integrated learning, XGBoost model, pearson coefficient, random forest ,"/> 基于集成学习的物资采购价格辅助决策方法

吉林大学学报(信息科学版) ›› 2022, Vol. 40 ›› Issue (5): 875-883.

• • 上一篇    

基于集成学习的物资采购价格辅助决策方法

程晓晓a , 蒲兵舰a , 张国平b , 丁萌萌b    

  1. 国网河南省电力公司 a. 物资部; b. 物资公司, 郑州 450000
  • 收稿日期:2022-03-01 出版日期:2022-10-10 发布日期:2022-10-10
  • 作者简介:程晓晓(1984— ), 男, 河南汝州人, 国网河南省电力公司工程师, 主要从事电网工程及招标采购管理研究, ( Tel)86- 15904318543(E-mail)chengxiao0722@ 163. com。
  • 基金资助:
    国网公司总部基金资助项目(5400-202124146A-0-0-00); 国网河南省电力公司基金资助项目(5217N0210001)

Auxiliary Decision Making Method of Material Purchase Price Based on Ensemble Learning

CHENG Xiaoxiao a , PU Bingjian a , ZHANG Guoping b , DING Mengmeng b   

  1. a. Department of Procurement; b. Materials Company, State Grid Henan Electric Power Company, Zhengzhou 450000, China
  • Received:2022-03-01 Online:2022-10-10 Published:2022-10-10

摘要: 电力所需物资种类繁多且物资价格的波动受到多种因素的影响, 为预测当下价格走势, 建立电缆价格 预测模型, 为电网公司提供招标底价的依据与合理采购意见, 对收集得到的物资价格, 利用动态时间规整方法 确定物资的不含税单价滞后于原材料价格的时间, 从而确定不含税单价、 原材料价格、 经济指标间的对应 关系。 影响物资价格变化的因素很多, 利用皮尔逊系数和随机森林两种方法筛选得到关键特征。 根据选定的 关键特征和数据分别建立 AdaBoost XGBoost(Extreme Gradient Boosting)、 随机森林 3 种模型对物资价格进行预 测。 利用预测评价指标平均绝对百分比误差(MAPE: Mean Absolute Percentage Error)评估预测效果, 结果表明 利用随机森林筛选关键特征配合 XGBoost 模型进行预测的准确率最高。

关键词: 价格预测, 集成学习, XGBoost 模型, 皮尔逊系数, 随机森林

Abstract: Power companies need many kinds of materials, and the fluctuation of material prices is affected by many factors. To predict the current price trend, a cable price prediction model is established which can provide the basis of bidding base price and reasonable procurement opinions for power companies is eslablished. The dynamic time warping method is used to determine the price delay time for the collected material prices, that is, the time when the tax free unit price of materials lags behind the price of raw materials. And the corresponding relationship among unit price excluding tax, raw material price and economic indicators is determined. There are many factors affecting the change of material price. The key characteristics are screened by Pearson coefficient and random forest. According to the selected key characteristics and data, AdaBoost, xgboost and random forest models are established to predict the material price. The average absolute percentage error of the prediction evaluation index is used to evaluate the prediction effect. It is found that the key features screened by random forest and then combined with XGBoost model have the highest accuracy of prediction. 

Key words: price forecast')">

price forecast, integrated learning, XGBoost model, pearson coefficient, random forest

中图分类号: 

  • TP181