吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (4): 646-652.

• • 上一篇    下一篇

基于卷积神经网络的抽油机井故障诊断研究

杨 莉, 张 帅, 鹿卓慧   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2022-08-16 出版日期:2023-08-16 发布日期:2023-08-17
  • 作者简介:杨莉(1979— ), 女, 黑龙江大庆人, 东北石油大学副教授, 主要从事人工智能研究, ( Tel) 86-13634663592 ( E-mail) 19696163@ qq. com。
  • 基金资助:
     国家自然科学基金资助项目(52074088);东北石油大学黑龙江省杰青后备人才基金资助项目(SJQH202002) 

Study of Fault Recognition of Pump Well Based on Convolutional Neural Network 

YANG Li, ZHANG Shuai, LU Zhuohui    

  1. College of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China)
  • Received:2022-08-16 Online:2023-08-16 Published:2023-08-17

摘要: 针对抽油机井示功图故障诊断问题, 提出基于轻型卷积神经网络, 并引入注意力机制, 以提高在参数量、 计算量减少的情况下的网络诊断性能。 网络基础结构采用 MobileNet-V2, 并将 ECA(Efficient Channel Attention Module)模块嵌入 MobileNet-V2 的倒残差模块中。 倒残差模块中, ECA 对特征图从通道维度, 将生成的通道注 意力重标定权重与输入特征图进行相应通道相乘, 最后获取经过注意力加权处理的特征图。 基于提出的方法, 在保证模型诊断准确性的前提下, 降低了网络模型结构的复杂性。 实验结果表明, 改进后的 MobileNet-V2 的 诊断准确率达到 97. 60% , 满足油田实际生产需求。 

关键词: 抽油机井, 故障诊断, 示功图, 卷积神经网络, 注意力机制

Abstract:  For the fault diagnosis problem of the indicator diagram of pumping wells, the feature information in the image is extracted by convolution neural network. In order to ensure the diagnostic performance of the network model, the structure complexity of the network model is reduced. Based on the lightweight convolution neural network, the attention mechanism is introduced to improve the diagnostic performance of the lightweight network model. First, in the network infrastructure the MobileNet-V2 network is used, and the attention ECA (Efficient Channel Attention Module) module is embedded in the inverse residual module of MobileNet-V2. Compared with the ordinary residual network, the features retained after convolution are more complete, so the fault diagnosis capability of the model is improved. Then, the ECA uses 1D convolution to achieve local cross- channel information interaction between adjacent channels and obtain the dependencies between local channels. The resulting channel attention re-calibration weights are multiplied by the corresponding channels of the input feature map of the module, and the attention-weighted feature map is obtained. The MobileNet-V2 accuracy rate is 90. 6% , and the improved MobileNet-V2 diagnostic accuracy rate is 97. 60% . 

Key words: pumping well, fault recognition, indicator diagram, convolutional neural network, attention mechanism

中图分类号: 

  • TP306