吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (4): 693-700.

• • 上一篇    下一篇

融合上下文信息的图神经网络推荐模型研究 

 袁 满1a , 褚润夫1a , 袁靖舒2 , 陈 萍1b   

  1. 1. 东北石油大学 a. 计算机与信息技术学院; b. 经济管理学院, 黑龙江 大庆 163318; 2. 中国石油大学(北京) 信息科学与工程学院, 北京 102249
  • 收稿日期:2022-02-26 出版日期:2023-08-16 发布日期:2023-08-17
  • 作者简介:袁满(1965— ), 男, 吉林农安人, 东北石油大学教授, 博士生导师, 主要从事知识组织、 认知科学、 数据科学和标准化 研究, (Tel)86-15765959186(E-mail)yuanman@ nepu. edu. cn。
  • 基金资助:
     黑龙江省高等教育教学改革基金资助项目(SJGY20200107) 

Research on Graph Neural Network Recommendation Model of Integrating Context Information

YUAN Man 1a , CHU Runfu 1a , YUAN Jingshu 2 , CHEN Ping 1b

  

  1. 1a. School of Computer and Information Technology; 1b. Schoolof Economics and Management, Northeast Petroleum University, Daqing 163318, China; 2. School of Information Science and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2022-02-26 Online:2023-08-16 Published:2023-08-17

摘要: 传统推荐算法缺少对图结构的隐含信息及上下文信息的利用, 从而可能降低推荐效果。 为提高传统推荐 算法的推荐效果, 提出基于图神经网络的推荐模型。 该模型基于图的高阶连通性理论, 使用图神经网络挖掘 用户-物品二部图中的隐含信息, 并由一阶扩展到多阶, 从而获取更精确的嵌入式表示和推荐效果; 在更新过 程中考虑上下文信息, 有利于理解上下文间的交互关系。 并将该模型在 Yelp-OSYelp-NC Amazon-book 数据 集上进行实验, 实验结果表明, HR(Hit Ratio) NDCG(Normalized Discounted Cumulative Gain)指标上均优于 相关对比算法, 证明该算法可优化推荐效果, 提升推荐质量。

关键词: 推荐系统, 图神经网络, 高阶连通性, 二部图

Abstract:  With the advent of big data era, the development of recommendation systems has become more and more vigorous. It has become a research hotspot to push information that may be of interest to users in a timely manner among massive amounts of information. Traditional recommendation algorithm lack implicit information and contextual information about graph structures. In response to this, a recommendation model is proposed based on graph neural network. The main innovations are: 1) Based on the higher-order connectivity theory of graphs, the graph neural network is used to mine the hidden information in the user-item bipartite graph, and a the order is extended to multiple orders, so as to obtain more accurate embedded representation and recommendation effect; 2 ) Consider context information in the update process, which is conducive to understanding the interaction between contexts. The model is tested on the Yelp-OS, Yelp-NC and Amazon-book datasets, and the results show that it is better than the related comparison algorithms in both HR(Hit Ratio)and NDCG(Normalized Discounted Cumulative Gain) indicators, which proves that the algorithm can optimize the recommendation effect and improve the recommendation quality. 

Key words: recommendation system, graph neural network, higher-order connectivity, bipartite-graph

中图分类号: 

  • TP391