吉林大学学报(信息科学版) ›› 2023, Vol. 41 ›› Issue (5): 858-865.

• • 上一篇    下一篇

基于 Python 的多维度、 层次化的综合实验平台

梁 楠1a , 王成喜1a , 张春飞1a , 徐 涛2 , 籍风磊1b   

  1. 1. 吉林大学 a. 公共计算机教学与研究中心; b. 通信工程学院, 长春 130012; 2. 一汽大众汽车有限公司 采购部, 长春 130013
  • 收稿日期:2023-04-05 出版日期:2023-10-09 发布日期:2023-10-10
  • 通讯作者: 籍风磊(1983— ), 男, 山东寿光人, 吉林大学工程师, 主要从事嵌入式软硬件开发及 无线通信研究, (Tel)86-13578922881(E-mail)jifl@ jlu. edu. cn。 E-mail:jifl@ jlu. edu. cn
  • 作者简介:梁楠(1991— ), 女, 山东梁山人, 吉林大学工程师, 主要从事图像处理及软件开发研究, (Tel)86-17808082534(E-mail) liangn@ jlu. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(62271228); 吉林省科技发展计划基金资助项目(20200401147GX); 吉林省高教科研课题 基金资助项目(JGJX2021D44; JGJX2021D18)

Design of Multi-Dimensional and Hierarchical Integrated Experimental Platform Based on Python

LIANG Nan 1a , WANG Chengxi 1a , ZHANG Chunfei 1a , XU Tao 2 , JI Fenglei 1b   

  1. 1a. Public Computer Teaching and Research Center; 1b. College of Communication Engineering, Jilin University, Changchun 130012, China; 2. Purchasing Department, First Automobile Works Volkswagen Automotive Company Limited, Changchun 130013, China
  • Received:2023-04-05 Online:2023-10-09 Published:2023-10-10

摘要:  为满足新工科背景下科研与教学融合的课程建设需求, 设计了一套基于 Python 的多维度、 层次化的 综合实验平台。 平台以专业人才培养方案为导向, 在图像识别、 机器学习及数据分析 3 个科研热点方向, 设计 了多维的实验教学内容。 图像识别实验从文字识别入门, 进而通过多种方式实现人脸和车牌识别。 机器学习 实验基于 Python 的机器学习算法实现, 并应用于玉米病害识别。 数据分析实验将 Python 处理 Excel 数据应用于 计算工作量和生物信息数据分析中。 学生在实验中可以根据专业需求和科研方向选择不同的实验项目, 从而 实现因材施教的培养目标。 将实验平台应用于教学实践中表明, 学生对 Python 在图像识别、 机器学习以及 数据分析的编程实现有了更深入的了解, 提升了科研兴趣, 从而实现将科研融入教学, 提高本科生教学质量的 目标。

关键词: 综合实验平台, Python 语言, 图像识别, 机器学习, 数据分析

Abstract:

To meet the need of integrating scientific research into teaching of Emerging Engineering Education, a multi-dimensional and hierarchical integrated experimental platform based on Python is designed. Guided by the talent-training plan, hierarchical modules involving image recognition, machine learning and data analysis is designed from scientific research hotspots. Image recognition module starts from character recognition, then face and license plate recognition are realized by several algorithms. In the machine learning module, commonly used machine learning algorithms are studied and corn disease is identified by various methods based on Python. In the data processing and analysis module, Excel data processing experiment based on Python is designed to analyze the data of workload and bioinformatics data. The platform enables students to learn the application of Python in the experiments, and choose different experimental projects according to professional needs and research directions to realize the goal of teaching students in accordance with their aptitude. By applying the experimental platform to teaching practice, it is demonstrated that students have a deeper understanding of Python’s programming implementation in image recognition, machine learning, and data analysis and enhanced research interest. And the goal of integrating scientific research into teaching and improving the quality of undergraduate teaching could be achieved.

Key words: Integrated experimental platform, python language, image recognition, machine learning, data analysis

中图分类号: 

  • TP391