fault identification, UNet ++ network model, weighted cross entropy loss function, attention mechanism, feature fusion ,"/> 基于<span> UNet++</span>卷积神经网络的断层识别 

吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (1): 100-110.

• • 上一篇    下一篇

基于 UNet++卷积神经网络的断层识别 

 安志伟1 , 刘玉敏2 , 袁 硕1 , 魏海军   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 重庆科技学院 电气工程学院, 重庆 401331
  • 收稿日期:2022-12-27 出版日期:2024-01-29 发布日期:2024-02-04
  • 通讯作者: 通讯作者: 刘玉敏(1978— ), 女, 辽宁昌图人, 重庆科技学院副教授, 硕士生 导师, 主要从事智能算法及其在地震数据处理与分析中的应用研究, (Tel)86-13936827553(E-mail)liuyumin330@ 163. com
  • 作者简介: 安志伟(1997— ), 男, 河南焦作人, 东北石油大学硕士研究生, 主要从事深度学习应用于断层识别研究, ( Tel) 86- 15565613585(E-mail)3321228387@ qq. com
  • 基金资助:
    黑龙江省自然科学基金资助项目(TD2019D001)

Fault Recognition Based on UNet++ Network Model 

AN Zhiwei 1 , LIU Yumin 2 , YUAN Shuo 1 , WEI Haijun 1   

  1. 1. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China; 2. School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • Received:2022-12-27 Online:2024-01-29 Published:2024-02-04

摘要: 针对传统相干体属性和机器学习在复杂断裂识别能力差的问题, 提出一种基于 UNet++卷积神经网络的断 层识别方法。 该方法采用加权交叉熵损失函数做目标函数, 使网络模型训练过程中避免了数据样本不平衡的 问题, 引入注意力机制和密集卷积块, 以及更多的跳跃连接, 更好地实现深层次断层语义信息和浅层次断层空 间信息之间的特征融合, 进而可以使 UNet++网络模型更好地实现断层识别。 实验结果表明, 该网络模型将 F1 值提高到了 92. 38% , loss 降低到 0. 012 0, 可以更好地学习断层特征信息。 将该模型应用于西南庄断层的识别 中, 结果表明, 该方法可以更准确预测断层位置, 在识别连续断层的准确率上有所提高, 有效防止了地下噪音 对于断层识别的不利影响, 从而验证了 UNet++网络模型在断层识别上具有一定的研究价值。 

关键词: 断层识别, UNet++网络模型, 加权交叉熵损失函数, 注意力机制, 特征融合 

Abstract: Fault identification plays an important role in geological exploration, reservoir description, structural trap and well placement. Aiming at the problem that traditional coherence attribute and machine learning are poor in complex fault recognition, a fault recognition method based on UNet++ convolutional neural network is proposed. The weighted cross entropy loss function is used as the objective function to avoid the problem of data sample imbalance in the training process of the network model. Attention mechanism and dense convolution blocks are introduced, and more jump connections are introduced to better realize the feature fusion between the semantic information of deep faults and the spatial information of shallow faults. Furthermore, the UNet ++ network model can realize fault identification better. The experimental results show that the F1 value increased to 92. 38% and the loss decreased to 0. 012 0, which can better learn fault characteristic information. The model is applied to the identification of the XiNanZhuang fault. The results show that this method can accurately predict the fault location and improve the fault continuity. It is proved that the UNet ++ network model has certain research value in fault identification. 

Key words: fault identification')">

fault identification, UNet ++ network model, weighted cross entropy loss function, attention mechanism, feature fusion

中图分类号: 

  • TP391