吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (2): 269-276.

• • 上一篇    下一篇

基于 BOA-SSA-BP 神经网络的充电桩故障诊断方法

茆 敏1a,1b , 窦真兰2 , 陈良亮3 , 杨凤坤3 , 刘鸿鹏1a,1b   

  1. 1. 东北电力大学 a. 电气工程学院; b. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室, 吉林 吉林 132012; 2. 国网上海市电力公司 国网上海综合能源服务有限公司, 上海 200433; 3. 国网电力科学研究院有限公司 国电南瑞科技股份有限公司, 南京 211106
  • 收稿日期:2023-09-09 出版日期:2024-04-10 发布日期:2024-04-12
  • 作者简介:茆敏(1999— ), 男, 合肥人, 东北电力大学硕士研究生, 主要从事数据挖掘技术研究, ( Tel)86-18356963738 (E-mail) m15754427942@ 163. com; 刘鸿鹏(1978— ), 男, 内蒙古包头人, 东北电力大学教授, 主要从事电动汽车充电技术研究, (Tel)86-13704517219(E-mail)lhp1978219@ 163. com。
  • 基金资助:
    国家电网有限公司科技基金资助项目(52094021N00S) 

Fault Diagnosis Method of Charging Pile Based on BOA-SSA-BP Neural Network 

MAO Min 1a,1b , DOU Zhenlan 2 , CHEN Liangliang 3 , YANG Fengkun 3 , LIU Hongpeng 1a,1b    

  1. 1a. School of Electrical Engineering; 1b. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Electric Power University, Jilin 132012, China; 2. State Grid Shanghai Integrated Energy Service Limited Company, State Grid Shanghai Municipal Electric Power Company, Shanghai 200433, China; 3. NARI Technology Development Limited Company, State Grid Electric Power Research Institute, Nanjing 211106, China
  • Received:2023-09-09 Online:2024-04-10 Published:2024-04-12

摘要: 针对电动汽车直流充电桩故障多发且难以精准诊断的问题, 提出一种基于改进反向传播神经网络(BP: Back Propagation)的充电桩故障诊断方法。 首先, 对充电桩的运行数据集归一化、 缺失值填充等预处理, 将 处理后的数据集输入 BP 模型中进行训练; 其次, 引入基于蝴蝶优化算法改进的麻雀搜索算法, BP 模型的权 值和阈值进行寻优, 得到最优化模型; 最后, 基于优化后的 BP 模型对充电桩的故障状态进行诊断。 仿真结果 表明, 在平均绝对误差、 平均绝对百分比误差、 均方根误差等方面均具有良好的计算优势, 相比传统 BP 算法 的诊断精度, 所提出的改进 BP 方法提升了 14. 85% , 能较为准确地诊断充电桩的状态, 为电动汽车故障诊断 提供有力保障。

关键词: 充电桩, 故障诊断, 神经网络, 麻雀搜索算法, 蝴蝶优化算法

Abstract: To address the issue of frequent faults in direct current electric vehicle charging piles and the difficulty of precise diagnosis, a fault diagnosis method based on an improved BP(Back Propagation) neural network is proposed. Firstly, the operation data set of the charging pile is preprocessed, such as normalization and filling in missing values, and the processed data set is input into the BP model for training. Secondly, an optimization method based on the BOA-SSA ( Butterfly Optimization Algorithm improved Sparrow Search Algorithm) is introduced to optimize the weights and thresholds of the BP model to obtain the optimal model. Finally, the fault status of the charging pile is diagnosed based on the optimized BP model. The simulation results show that the proposed BP method has good computational advantages in terms of MAE(Mean Absolute Error), MAPE(Mean Absolute Percentage Error), and RMSE(Root Mean Square Error). Compared to the traditional BP algorithm, the diagnostic accuracy of the improved BP method has increased by 14. 85% , which can diagnose the state of the charging pile accurately, providing a strong guarantee for the fault diagnosis of electric vehicles.

Key words: charging pile, fault diagnosis, neural network, sparrow search algorithm, butterfly optimization algorithm

中图分类号: 

  • TP206. 3