吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (2): 339-347.

• • 上一篇    下一篇

基于 Swin-Transformer 的可视化安卓恶意软件检测研究

王海宽, 原锦明   

  1. 晋城职业技术学院 信息工程系, 山西 晋城 048026
  • 出版日期:2024-04-10 发布日期:2024-04-12
  • 作者简介:王海宽(1974— ), 男, 山西阳城人, 晋城职业技术学院讲师, 主要从事人工智能和数据库研究, ( Tel)86-18603565988 (E-mail)958600950@ qq. com; 原锦明(1979— ), 男, 山西晋城人, 晋城职业技术学院副教授, 主要从事网络安全和 云计算研究, (Tel)86-13593339975(E-mail)350790509@ qq. com。
  • 基金资助:
    山西省教育科学“十四五冶规划基金资助项目(GH-221026); 晋城职业技术学院校级基金资助项目(LX2216)

esearch on Visual Android Malware Detection Based on Swin-Transformer

WANG Haikuan, YUAN Jinming   

  1. Department of Information Engineering, Jincheng Vocational and Technical College, Jincheng 048026, China
  • Online:2024-04-10 Published:2024-04-12

摘要: 为了更好地利用深度学习框架防范安卓平台上恶意软件攻击, 提出了一种新的应用程序可视化方法, 从而弥补了传统的采样方法存在的信息损失问题; 同时, 为得到更加准确的软件表示向量, 使用了 Swin- Transformer架构代替传统的卷积神经网络(CNN: Convolutional Neural Network)架构作为特征提取的主干网络。 实验采用的数据集中的样本来自 Drebin CICMalDroid 2020 数据集。 研究结果表明, 新提出的可视化方法 优于传统的可视化方法, 检测系统的准确率达到 97. 39% , 具有较高的恶意软件识别能力。

关键词: 安卓恶意软件, 深度学习, 计算机视觉 

Abstract: The connection between mobile internet devices based on the Android platform and people’s lives is becoming increasingly close, and the security issues of mobile devices have become a major research hotspot. Currently, many visual Android malware detection methods based on convolutional neural networks have been proposed and have shown good performance. In order to better utilize deep learning frameworks to prevent malicious software attacks on the Android platform, a new application visualization method is proposed, which to some extent compensates for the information loss problem caused by traditional sampling methods. In order to obtain more accurate software representation vectors, this study uses the Swin Transformer architecture instead of the traditional CNN(Convolutional Neural Network) architecture as the backbone network for feature extraction. The samples used in the research experiment are from the Drebin and CICCalDroid 2020 datasets. The research experimental results show that the proposed visualization method is superior to traditional visualization methods, and the detection system can achieve an accuracy of 97. 39% , with a high ability to identify malicious software.

Key words: Android malware, deep learning, computer vision 

中图分类号: 

  • TP311