吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (3): 446-456.

• • 上一篇    下一篇

基于金字塔注意力机制的遥感图像超分辨率网络

段 锦a , 李 豪a , 祝 勇b , 莫苏新a   

  1. 长春理工大学 a. 电子信息工程学院; b. 计算机学院, 长春 130022
  • 收稿日期:2023-04-28 出版日期:2024-06-18 发布日期:2024-06-17
  • 通讯作者: 祝勇(1987— ), 男, 长春人, 长春理工大学讲师, 博士, 硕士生 导师, 主要从事机器视觉研究, (Tel)86-18615756983(E-mail)zhy991112@ sina. com E-mail:zhy991112@ sina. com
  • 基金资助:
    吉林省科技发展计划基金资助项目(20220508152RC); 吉林省产业技术研究与开发基金资助项目(2023C031-3)

Remote Imaging Super Resolution Network Based on Pyramid Attention Mechanism

DUAN Jin a , LI Hao a , ZHU Yong b , MO Suxin   

  • Received:2023-04-28 Online:2024-06-18 Published:2024-06-17
  • About author:段锦 ( 1971— ), 男, 长春人, 长春理工大学教授, 博士生导师, 主要从事模式识别、 偏振成像研究, ( Tel) 86- 15753017638(E-mail)duanjin@ vip. sina. com

摘要: 针对超分辨率算法重建的遥感图像细节等信息丢失的问题, 为保证遥感重建图像包含较多的纹理、 高频信息, 在生成对抗网络基础上提出一种基于金字塔注意力机制的遥感图像超分辨率网络。 设计了一种全新的金字塔双重注意力模块, 包括通道注意力网络和空间注意力网络。 通道注意力网络中采用金字塔池化取代平均池化和最大池化, 该结构设计从全局和局部信息角度出发增强特征表述能力; 空间注意力网络则采用大尺度卷积, 以加强局部信息的提取程度, 可有效提取纹理、 高频等信息。 设计密集多尺度特征模块, 利用非对称卷积提取不同尺度的特征信息, 通过密集连接融合多层级尺度特征以加强纹理、 高频等信息的提取精度。 在 公开的 NWPU-RESISC45 数据集上进行实验验证, 实验结果分析表明,该算法在主观视觉效果和客观评价指标上均优于对比方法, 重建性能相对较好。

关键词: 遥感图像, 超分辨率, 金字塔双重注意力, 密集多尺度特征, 非对称卷积 

Abstract: Aiming at the problem of information loss, such as details of remote sensing images reconstructed by a super-resolution algorithm, in order to ensure that remote sensor reconstruction images contain more texture and high-frequency information, a remote-sensitive image super resolution network is proposed based on a pyramid- based attention mechanism and the generation of confrontational networks. Firstly, a new pyramidal dual attention module is designed, including channel attention network and spatial attention network. Pyramid pooling is used instead of average pooling and maximum pooling in the channel attention network structure to enhance the feature representation capability from the perspective of global and local information. The spatial attention network structure adopts large scale convolution to expand the integration capability of local information, which can effectively extract texture, high frequency and other information. Secondly, the dense multi-scale feature module is designed to extract feature information at different scales using asymmetric convolution, and the extraction accuracy of texture, high frequency and other information is enhanced by fusing multi-level scale features through dense connection. Experimental validation is performed on the publicly available NWPU- RESISC45 dataset, and the experimental analysis shows that the algorithm outperforms the comparison methods in both subjective visual effect and objective evaluation metrics, and the reconstruction performance is relatively good. 

Key words: remote sensing images, super resolution, the pyramid ofdouble attention, dense multi-dimensional characteristics, asymmetric convolution

中图分类号: 

  • TP391. 4