吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (4): 740-746.

• • 上一篇    下一篇

物联网同频共用跨域数据流动安全检测算法

魏晓艳   

  1. 山西工程技术学院 大数据与智能工程系, 山西 阳泉 030002

  • 收稿日期:2023-05-16 出版日期:2024-07-22 发布日期:2024-07-22
  • 作者简介:魏晓艳(1981— ), 女, 山西长治人, 山西工程技术学院讲师, 主要从事计算机应用物联网研究, ( Tel) 86-13313530684 ( E-mail)20616160@ qq. com。
  • 基金资助:

    教育部产学研合作协同育人基金资助项目(2022HX-18); 山西工程技术学院 2022 年度校级应用型课程开发与建设基金资助项目(2022082514)

Security Detection Algorithm for Cross Domain Data Flow Sharing on Same Frequency in Internet of Things

WEI Xiaoyan   

  1. Department of Big Data and Intelligent Engineering, Shanxi Institute of Technology, Yangquan 030002, China

  • Received:2023-05-16 Online:2024-07-22 Published:2024-07-22

摘要:

为保障物联网数据跨域流动安全, 提出物联网同频共用跨域数据流动安全检测算法。该方法基于数据离群特征计算数据集信息熵, 将信息熵计算结果较大的数据点作为聚类中心, 通过类簇中心距离的计算分析数据分布特征; 将数据分布特征输入 BP( Back Propagation) 神经网络中, 结合遗传学习算法完成同频共用跨域数据的深度挖掘。利用小波分析法分割同频共用数据中的有效信号与噪声信号, 引入 wrcoef 函数实现无噪信号的重构输出。基于 Markov 链状态转移概率矩阵, 建立马尔可夫跨域数据流动安全检测模型; 通过待测样本与标准样本之间相对熵差异值的计算, 完成物联网同频共用跨域数据流动安全检测。 仿真结果表明, 该方法能有效提高数据流动安全检测效率, 实现了数据跨域流动态势的精准感知。

关键词: 信息熵算法, 遗传学习算法, 数据深度挖掘, 小波分析法, 马尔可夫模型

Abstract: To ensure the security of cross domain data flow in the Internet of Things, a security detection algorithm for cross domain data flow sharing the same frequency in the Internet of Things is proposed. This method calculates the information entropy of the data set based on the data outlier characteristics, takes the data points with larger information entropy calculation results as the cluster center, and analyzes the data distribution characteristics through the calculation of the cluster center distance. The data distribution features are inputted into the BP( Back Propagation) neural network and combined with genetic learning algorithms to achieve deep mining of shared cross domain data on the same frequency. Wavelet analysis is used to segment effective signals and noise signals in the same frequency shared data, and introduce the wrcoef function achieving the reconstruction output of noise free signals. Based on the Markov chain state transition probability matrix, a detection model of Markov cross domain data flow security is established. By calculating the relative entropy difference value between the test sample and the standard sample, the security detection of cross domain data flow for the same frequency sharing of the Internet of Things is completed. The simulation results show that this method can effectively improve the efficiency of data flow security detection and achieve accurate perception of data flow trends across domains.

Key words: information entropy algorithm, genetic learning algorithm, deep data mining, wavelet analysis method, Markov model

中图分类号: 

  • TN929. 5