吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (5): 881-888.

• • 上一篇    下一篇

基于对比学习的医学图像分类改进方法 

刘世峰,王  欣   

  1. 吉林大学计算机科学与技术学院,长春130012
  • 收稿日期:2023-03-11 出版日期:2024-10-21 发布日期:2024-10-21
  • 作者简介: 刘世峰(1997— ), 男, 吉林省吉林市人, 吉林大学硕士研究生, 主要从事计算机医学图像处理研究, (Tel)86- 18843019590(E-mail)1139104205@ qq. com; 王欣(1975— ), 女, 长春人, 吉林大学副教授, 主要从事计算机图形学与 图像处理研究,(Tel)86-431-85168752(E-mail)w_x@ jlu. edu. cn。
  • 基金资助:
    吉林省科技发展计划基金资助项目(20170414006GH;20210204138YY) 

Improved Method of Medical Images Classification Based on Contrast Learning 

LIU Shifeng, WANG Xin    

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2023-03-11 Online:2024-10-21 Published:2024-10-21

摘要: 针对医学图像进行标记需要相关专业知识,导致很难获取大规模的医学图像分类标记,使基于深度学习 的医学图像分类发展受到限制的问题,笔者将自监督对比学习应用于医学图像分类任务,利用对比学习方法 进行医学图像分类的预训练,在预训练阶段从无标记的医学图像中学习特征,为后续的医学图像分类提供先验 知识。 实验表明,笔者提出的基于自监督对比学习的医学图像分类改进方法,有效提高了ResNet的分类性能。

关键词: 医学图像, 图像分类, 自监督学习, 深度学习

Abstract: Medical image classification is an important method to determine the illness of patients and give corresponding treatment advice. As medical image labeling requires relevant professional knowledge, it is difficult to obtain large-scale medical image classification labels. And the development of medical image classification based on deep learning method is limited to some extent. To solve this problem, self-supervised contrast learning is applied to medical image classification tasks in this paper. Contrast learning method is used in pre-training of medical image classification. The features are learned from unlabeled medical images in the pre-training stage to provide prior knowledge for subsequent medical image classification. Experimental results show that the proposed improved method of medical image classification based on self-supervised contrast learning enhances the classification performance of the ResNet. 

Key words: medical image, image classification, self-supervised learning, deep learning

中图分类号: 

  • TP391