吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (6): 1018-1024.

• • 上一篇    下一篇

基于改进CNN 的弱边缘超声图像分割方法

朱彦华   

  1. 广东药科大学附属第一医院设备科,广州510090
  • 收稿日期:2023-06-07 出版日期:2024-12-23 发布日期:2024-12-23
  • 作者简介:朱彦华(1978— ), 女, 湖南郴州人, 广东药科大学附属第一医院高级工程师,主要从事医疗信息化、人工智能、计算机 网络研究,(Tel)86-18975159318(E-mail)jkdsfhz2631@163. com。
  • 基金资助:
    广东省经济与信息化委员会、 广东省财政厅共同编制的广东省工业和信息化专项资金互联网+冶应用基金资助项目 (粤经信电软函[2017]74 )

Segmentation Method for Weak Edge Ultrasound Images Based on Improved CNN 

ZHU Yanhua   

  1. Equipment Department, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510090, China
  • Received:2023-06-07 Online:2024-12-23 Published:2024-12-23

摘要: 为解决弱边缘超声图像分割难度大的问题,提出基于改进CNN(Convolutional Neural Networks)的弱边缘 超声图像分割方法。 该方法首先利用平稳小波变换去除图像中的噪声,并通过加权最小二乘滤波器强化图像 边缘细节,然后将改进卷积注意力模块添加到残差网络模型中提取图像特征,最后通过优化损失函数提高图像的 分割精度。 实验结果表明,所提方法对超声图像的弱边缘细节处理效果好,可提高对医学超声图像的分割精度。 

关键词: 超声图像分割, 图像预处理, 卷积神经网络, 平稳小波变换, 加权最小二乘滤波器

Abstract: To solve the problem of difficulty in segmentation of weak edge ultrasound images, an improved CNN (Convolutional Neural Networks) based weak edge ultrasound image segmentation method is proposed. The method first uses stationary wavelet transform to remove the noise in the image, and then uses weighted least square filter to enhance the image edge details. Then, an improved convolutional attention module is added to the residual network model to extract image features. Finally, the image segmentation accuracy is improved by optimizing the loss function. The experimental results show that the proposed method has good performance in processing weak edge details of ultrasound images and can improve the segmentation accuracy of medical ultrasound images. 

Key words: ultrasound image segmentation, image preprocessing, convolutional neural network ( CNN), stationary wavelet transform, weighted least squares filter

中图分类号: 

  • TN911.73