吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (6): 1074-1089.

• • 上一篇    下一篇

多头注意力引导卷积网络检测阿尔兹海默症

周丰丰,董广宇,李柯薇   

  1. 吉林大学计算机科学与技术学院,长春130012
  • 收稿日期:2023-10-21 出版日期:2024-12-23 发布日期:2024-12-23
  • 通讯作者: 李柯薇(1997— ), 女, 吉林通化人, 吉林大学实验室管理员, 主要从事 生物医学大数据研究,(Tel)86-431-85166024(E-mail)kwbb1997@ gmail. com。
  • 作者简介:周丰丰(1977— ), 男, 江苏盐城人, 吉林大学教授, 博士生导师, 主要从事健康大数据研究, (Tel)86-431-85166024 (E-mail)FengfengZhou@ gmail. com。
  • 基金资助:
    国家自然科学基金资助项目(62072212; U19A2061); 吉林省中青年科技创新创业卓越人才(团队)基金资助项目(创新类) (20210509055RQ); 吉林省大数据智能计算实验室基金资助项目(20180622002JC)

Multi-Head Attention-Guided Convolutional Network for Detecting Alzheimer’s Disease

ZHOU Fengfeng, DONG Guangyu, LI Kewei   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2023-10-21 Online:2024-12-23 Published:2024-12-23

摘要: 针对脑认知疾病的检测困难和识别准确率低等问题,将卷积神经网络的局部依赖建模能力和注意力机制 的全局依赖建模能力相融合,提出了由多头注意力引导的卷积神经网络(MAGINet: Multi-Head Attention-Guided Convolutional Network), 用于识别正常(NC: Normal Control)、 早期轻度认知障碍(EMCI: Early Mild Cognitive Impairment)、 晚期轻度认知障碍(LMCI: Late Mild Cognitive Impairment) 和阿尔茨海默症(AD: Alzheimers Disease), 探索 NC MCI(EMCI LMCI) AD 的完整演化过程。 首先, 3 种功能连接网络(FCN: Functional Connectivity Network)变体的互补信息进行整合, 形成一个多视图学习框架。 其次, 在每个视图下的 卷积神经网络模块中,设计了一种新的多头注意力模块,先后通过完成自注意力、通道注意力及空间注意力 帮助建模全局依赖关系,弥补卷积神经网络的局部机制优化模型的性能,并证明了其有效的信息提取能力。 最后, 将该模型用于多个脑病分类,实验结果证明了模型的强大通用性和可重复性。

关键词: 阿尔茨海默症, 卷积神经网络, 注意力机制, 功能连接网络

Abstract: Aiming at the problems of difficult detection and low recognition accuracy of brain cognitive diseases, a multi-head attention-guided convolutional neural network ( MAGINet: Multi-Head Attention-Guided Convolutional Network) is proposed. This integrates the local dependent modeling ability of the convolutional neural network with the global dependent modeling ability of the attention mechanism. It is used to identify NC (Normal), EMCI(Early Mild Cognitive Impairment), LMCI(Late Mild Cognitive Impairment), and AD (Alzheimer’s Disease), and to explore the complete evolution from NC through MCI(EMCI and LMCI) to AD. First, the complementary information of three FCN(Functional Connectivity Network) variants is integrated to form a multi-view learning framework. Secondly, a new multi-head attention module is designed in the convolutional neural network module in each view. By completing self-attention, channel attention, and spatial attention successively, it helps to model the global dependence relationship, compensates for the local mechanism of the convolutional neural network, optimizes the performance of the model, and proves its effective information extraction ability. Finally, the model is applied to several encephalopathy classification experiments to prove the strong universality and repeatability of the model. 

Key words: Alzheimers disease, convolutional neural network, attention mechanism, functional connection network

中图分类号: 

  • TP399