吉林大学学报(信息科学版) ›› 2024, Vol. 42 ›› Issue (6): 1117-1122.

• • 上一篇    下一篇

基于随机森林算法的飞行员脑力负荷多维综合评估模型

韩 磊   

  1. 解放军总医院第六医学中心特勤科,北京100038
  • 收稿日期:2023-08-15 出版日期:2024-12-23 发布日期:2024-12-23
  • 作者简介:韩磊(1975— ), 男, 山东泰安人, 解放军总医院主任医师, 主要从事航空特殊人机环因素的生理心理影响及其防护 研究, (Tel)86-13052342429(E-mail)Hanlei00113@163. com。
  • 基金资助:
    军队医学科技青年培育计划拔尖基金资助项目(20QNPY117)

Multidimensional Comprehensive Evaluation Model of Pilots’ Mental Workload Based on Random Forest Algorithm

HAN Lei    

  1. pecial Service Department of the Sixth Medical Center, the General Hospital of the People’s Liberation Army, Beijing 100038, China
  • Received:2023-08-15 Online:2024-12-23 Published:2024-12-23

摘要: 针对飞行员在执行任务时需要同时处理多种信息源和任务,加重了脑力劳动负荷的问题,为提高飞行 安全性和飞行员的工作效能,研究了基于随机森林算法的飞行员脑力负荷多维综合评估模型。 利用线性有限 脉冲响应带通滤波器处理脑电信号,剔除高频及低频噪音,计算失匹配负波,获得线性插值脑电信号采样点, 根据脑电信号邻域重叠采样点,提取各节律的功率谱密度和能量特征。 构建随机森林算法多维综合评估模型, 确定各信号波动频率输出点, 结合投票模式获得多维脑力负荷最佳的分类结果,实现飞行员脑力负荷综合 评估。 实验结果证明,所提方法具有较高的分类精度,能精准评估飞行员脑力负荷状态。

关键词: 随机森林算法, 脑力负荷, 多维综合评估, 功率谱密度, 失匹配负波

Abstract: Pilots need to simultaneously process multiple information sources and tasks while performing tasks, which increases the workload of mental labor. In order to improve flight safety and pilot work efficiency, a multidimensional comprehensive evaluation model for pilot mental workload based on random forest algorithm is studied. A linear finite pulse response bandpass filter is used to process EEG(Electroencephalogram) signals, removing high-frequency and low-frequency noise, calculating mismatched negative waves, obtaining linearly interpolated EEG signal sampling points, and extracting power spectral density and energy features of each rhythm based on overlapping sampling points in the EEG signal neighborhood. A multi-dimensional comprehensive evaluation model of the random forest algorithm is constructed, determine the output points of each signal fluctuation frequency, and combine the voting mode to obtain the optimal classification results of multi-dimensional mental load, achieving comprehensive evaluation of pilot mental load. The experimental results demonstrate that the proposed method has high classification accuracy and can accurately evaluate the mental workload status of pilots.

Key words: random forest algorithm, brain load, multidimensional comprehensive evaluation, power spectral density, mismatched negative wave

中图分类号: 

  • TP391