吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (1): 90-97.

• • 上一篇    下一篇

基于 TRSSA-ELM 算法的股价预测研究

谭佳伟1, 谷佳澄1, 李春梅1, 王善求1, 秦丹丹2   

  1. 1. 长春工业大学 数学与统计学院, 长春 130012; 2. 空军航空大学 基础部, 长春 130012
  • 收稿日期:2023-11-12 出版日期:2025-02-24 发布日期:2025-02-24
  • 作者简介:谭佳伟(1979— ), 男, 长春人, 长春工业大学副教授, 主要从事数据科学与人工智能、 最优化理论及应用研究, (Tel)86-13159740923(E-mail)tanjiawei@ ccut. edu. cn。
  • 基金资助:
    吉林省教育厅基金资助项目(JJKH20220663KJ)

Research on Stock Price Prediction Based on TRSSA-ELM Algorithm

TAN Jiawei1, GU Jiacheng1, LI Chunmei1, WANG Shanqiu1, QIN Dandan2   

  1. 1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China; 2. Fundamental Department, Aviation University of Air Force, Changchun 130012, China

  • Received:2023-11-12 Online:2025-02-24 Published:2025-02-24

摘要:

针对股价预测中存在的不确定性、 间断性、 随机性和非线性等问题, 提出一种 TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。 首先, 采用自适应 Tent 混沌映射和随机游走策略对算法进行改进, 增强种群多样性和随机性, 提高算法局部和全局的寻优能力。 其次, 使用单峰、 多峰和固定维多峰测试函数对 TRSSA(Tent Random Walk Sparrow Optimization Algorithm)性能进行了验证,相比于 SSA(Sparrow Optimization Algorithm)、AO(Aquila Optimizer)、POA(Pelican Optimization Algorithm)和 GWO(Grey Wolf Optimizer), TRSSA 算法具有更好的收敛速度、 精度和统计性质。 最后, 由于 ELM(Extreme Learning Machine)模型随机生成权重和阈值, 降低了预测精度和泛化能力, 应用 TRSSA 算法优化 ELM 模型的权重和阈值, 并用三安光电股票数据集对 TRSSA-ELM 模型进行了测试。 实验结果表明, TRSSA-ELM 模型相比于 SSA-ELM、ELM、SVR(Support Vector Regression)和 GBDT(Gradient Boosting Decision Tree), 具有更好的预测精度和稳定性。

关键词: 股价预测, TRSSA-ELM 预测模型, 自适应 Tent 混沌映射, 随机游走策略

Abstract:

In order to solve the problems of uncertainty, discontinuity, randomness and nonlinearity in stock price forecasting, a TRSSA-ELM ( Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine) stock price forecasting model is proposed. Firstly, adaptive Tent chaotic mapping and random walk strategy are used to improve the algorithm, which enhances the diversity and randomness of the population and improves the local and global optimization ability of the algorithm. Secondly, the performance of TRSSA( Tent Random Walk Sparrow Optimization Algorithm) is verified by using single peak, multi-peak and fixed multi-peak

test functions. Compared to SSA( Sparrow Optimization Algorithm), AO( Aquila Optimizer), POA( Pelican Optimization Algorithm) and GWO(Grey Wolf Optimizer), TRSSA algorithm has better convergence speed, accuracy and statistical properties. Finally, because the ELM ( Extreme Learning Machine) model randomly generates weights and thresholds, which reduces the prediction accuracy and generalization ability, TRSSA algorithm is applied to optimize the weights and thresholds of the ELM model, and the TRSSA-ELM model is tested in Sanan Optoelectronic stock data set. The experimental results show that TRSSA-ELM model has better prediction accuracy and stability than SSA-ELM, ELM, SVR(Support Vector Regression) and GBDT(Gradient Boosting Decision Tree).

Key words: stock price forecast, tent random walk sparrow optimization algorithm-extreme learning machine(TRSSA-ELM) forecasting model, adaptive tent chaotic mapping, random walk strategy

中图分类号: 

  • TP18