吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 461-466.

• •    下一篇

基于EEMD-PRT 的管道泄漏检测去噪算法

李建阁1, 王  澜2, 梁婧涵2   

  1. 1. 中国石油大庆油田有限责任公司采油工艺研究院,黑龙江大庆163453; 2. 东北石油大学电气信息工程学院,黑龙江大庆163318
  • 收稿日期:2024-06-22 出版日期:2025-06-19 发布日期:2025-06-19
  • 通讯作者: 王澜(2000— ), 女, 黑龙江绥化人, 东北石油大学 硕士研究生,主要从事智能控制研究,(Tel)86-13351856702(E-mail)1240492800@qq. com
  • 作者简介:李建阁(1968— ), 男, 辽宁凌海人, 中国石油大庆油田有限责任公司采油高级工程师, 主要从事检验检测技术研究, (Tel)86-13704895899(E-mail)lijiange@ petrochina. com. cn
  • 基金资助:
    海南省重点研发基金资助项目(ZDYF2022SHFZ047)

EEMD-PRT Algorithm for Denoising Pipeline Leakage Detection

LI Jiange1, WANG Lan2, LIANG Jinghan2   

  1. 1. Research Institute of Oil Production Technology, Petrochina Daqing Oilfield Company, Daqing 163453, China; 2. School of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2024-06-22 Online:2025-06-19 Published:2025-06-19

摘要: 针对集合经验模态分解(EEMD:Ensemble Empirical Mode Decomposition)算法在分解过程中, 生成的固有 模态函数(IMF: Intrinsic Mode Function)分量存在对齐困难的问题, 提出将 EEMD 与相位随机化技术(PRT: Phase Randomization Technique)相结合的全新去噪方法, 使改进后的 EEMD 算法具有更加显著的去噪优势。 通过引入PRT, 能有效处理非线性和非平稳信号,极大地提高了IMF的稳定性和可靠性,进而显著改善EEMD 算法在噪声环境下的性能。 试验结果表明,EEMD-PRT算法与传统算法相比,可提高含噪信号的信噪比和相关 系数, 减小均方误差和平均绝对误差,且在不同孔径的管道泄漏检测中其有效性得到了充分验证。

关键词: 集合经验模态分解, 相位随机化技术, 多尺度, 管道泄漏检测

Abstract: The EEMD(Ensemble Empirical Mode Decomposition) algorithm faces challenges in aligning the generated IMF(Intrinsic Mode Function) components during the decomposition process. To address this issue, a novel denoising method that combines EEMD with the PRT(Phase Randomization Technique) is proposed, enhancing the denoising performance of the improved EEMD algorithm. By incorporating PRT, the method effectively handles nonlinear and nonstationary signals, significantly improving the stability and reliability of the IMFs, and enhances the performance of the EEMD algorithm in noisy environments. The experimental results strongly demonstrate the innovation’s value, as the EEMD-PRT algorithm shows superior performance compared to traditional methods by improving the signal-to-noise ratio and correlation coefficient of noisy signals, reducing the mean square error and mean absolute error. Furthermore, its effectiveness has been thoroughly validated in pipeline leak detection for pipes with varying diameters.

Key words: ensemble empirical mode decomposition, phase randomization technique , multi-scale, pipeline leak detection

中图分类号: 

  • TN911.7