吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 504-510.

• • 上一篇    下一篇

基于改进型结构重参数化卷积神经网络的气体传感器数据分析

刘元振a,b, 隋成明a,b, 刘子琪a,b, 刘凤敏a,b   

  1. 吉林大学a. 电子科学与工程学院;b. 集成光电子学国家重点实验室,长春130012
  • 收稿日期:2024-03-04 出版日期:2025-06-19 发布日期:2025-06-19
  • 通讯作者: 刘凤敏(1977— ), 女, 长春人, 吉林大学教授, 博士生导师, 主要从事基于半导体氧化物的能源和环境领域的电子器件研究,(Tel)86-431-85168384(E-mail)liufm@jlu.edu.cn。
  • 作者简介:刘元振(1999— ), 男, 河北沧州人, 吉林大学硕士研究生, 主要从事气敏传感器及传感器数据分析研究, (Tel)86- 15226755882(E-mail)1119230470@ qq. com
  • 基金资助:
    国家自然科学基金资助项目(62271225;61871198) 

Gas Sensor Data Analysis Based on Improved Structure Re-Parameterized Convolutional Neural Network 

LIU Yuanzhena,b, SUI Chengminga,b, LIU Ziqia,b, LIU Fengmina,b   

  1. a. College of Electronic Science and Engineering; b. State Key Lab Integrated Optoelect, Jilin University, Changchun 130012, China
  • Received:2024-03-04 Online:2025-06-19 Published:2025-06-19

摘要: 为弥补单一气体传感器面对多种气体选择性的不足,使其能更精准识别多种气体,提出了一种基于结构 重参数化技术及深度可分离卷积技术的改进型卷积神经网络,将模型训练时的多分支卷积结构集成到推理时 的单分支简单卷积层中。 在简化推理模型复杂性的同时,大大增强了模型对气体响应数据的特征提取能力。 将该方法应用于含有10种常见VOCs的气体传感器阵列公共数据集,识别准确率达到96.46%,调整模型复杂 度增加卷积层后,准确率可达97.44%

关键词: 电子鼻, 气体分类识别, 结构重参数化, 卷积神经网络

Abstract: In order to make up for the lack of selectivity of a single gas sensor in the face of a variety of gases and to identify a variety of gases more accurately, an improved convolutional neural network based on structural reparameterization technology and depth-separable convolution technology is proposed. It integrates the multi- branch convolution structure during model training into the single branch simple convolution layer during inference. In addition to simplifying the complexity of the inference model, the feature extraction ability of the model for gas response data is greatly enhanced. When this method is applied to a common data set of gas sensor array containing 10 common VOCs, the recognition accuracy reaches 96. 46%, and the accuracy reaches 97. 44% after adjusting the complexity of the model and adding the convolutional layer.

Key words:  , e-nose, gas classification and identification, structure re-parameterized, convolutional neural networks(CNN)

中图分类号: 

  • TP212.2