吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (3): 583-590.

• • 上一篇    下一篇

基于改进支持向量机的动态多点手势动作识别方法

张科星,何  江   

  1. 太原学院计算机科学与技术系,太原030012
  • 收稿日期:2024-02-21 出版日期:2025-06-19 发布日期:2025-06-19
  • 作者简介:张科星(1980— ), 女, 太原人, 太原学院副教授,主要从事网络工程、 物联网、 人工智能等研究,(Tel)86-13393438986 (E-mail)47163578@ qq. com 。
  • 基金资助:
    全国计算机基础教育研究会基金资助项目(2023-AFCEC-404) 

Method of Dynamic Multipoint Gesture Recognition Based on Improved Support Vector Machine 

ZHANG Kexing, HE Jiang    

  1. Department of Computer Science and Technology, Taiyuan University, Taiyuan 030012, China
  • Received:2024-02-21 Online:2025-06-19 Published:2025-06-19

摘要:  针对手势识别由于分割效果差,导致识别率较低等问题,提出基于改进支持向量机的动态多点手势动作 识别方法。 选用深度阈值法分割动态多点手势图像, 提取出手掌中最大的圆细化手部区域, 获取7维手部 HOG(Histogram of Oriented Gradients)特征向量, 完成手势动作图像预处理。 引入支持向量机, 并且通过误差项 改进该算法。 采用改进后的支持向量机最优线性分类特征向量,利用支持向量机输入分类后的手势特征向量, 实现动态多点手势动作识别。 实验结果表明, 所提方法受光照影响波动小, 在有光照情况下, 识别率达到 92. 5%以上, 而无光照情况下, 识别率仍高于90.0%, 并且图像分割信息完整、识别准确性高。

关键词: 改进支持向量机, 动态多点手势, 手势动作识别, HOG特征提取, BP神经网络

Abstract: The recognition rate of gesture recognition is low because of the poor segmentation effect. Therefore, a dynamic multi-point gesture recognition method based on improved support vector machine is proposed. The depth threshold method is used to segment the dynamic multi-point gesture image, extract the largest circular fine hand area in the palm, obtain 7-dimensional HOG(Histogram of Oriented Gradients) feature vector of the hand, complete the gesture action image preprocessing, introduce support vector machine, and improve the algorithm by error term, and adopt the optimized linear classification feature vector of the improved support vector machine. The dynamic multi-point gesture recognition is realized by using the gesture feature vector after input classification by support vector machine. The experimental results show that the recognition rate reaches more than 92. 5% under the condition of illumination, while the recognition rate is still higher than 90. 0% under the condition of no illumination. The proposed method has little fluctuation under the influence of illumination, and the image segmentation information is complete and the recognition accuracy is high.

Key words: improved support vector machine, dynamic multi-point gesture, gesture recognition, histogram of oriented gradient(HOG) feature extraction, back propagation(BP) neural network

中图分类号: 

  • TP391