吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 763-775.

• • 上一篇    下一篇

迁移学习在焊接熔透识别和缺陷检测中的应用 

刘文杰1, 刘新锋1, 周方正2, 田 杰3, 贾传宝2, 宋立莉1   

  1. 1. 山东建筑大学 计算机科学与技术学院,济南250101;2. 山东大学 材料科学与工程学院,济南250061; 3. 山东女子学院数据科学与计算机学院,济南250300
  • 收稿日期:2024-06-28 出版日期:2025-08-15 发布日期:2025-08-14
  • 通讯作者: 刘新锋(1977— ), 男, 山东聊城人, 山东建筑大学副教授, 硕士生导师,主要从事行业大数据平台建设与数据分析研究,(Tel)86-13370510651(E-mail)liuxinfeng18@sdjzu.edu.cn。 E-mail:2023110117@ stu. sdjzu. edu. cn
  • 作者简介:刘文杰(2000— ), 女, 济南人, 山东建筑大学硕士研究生, 主要从事基于迁移学习的焊接熔透预测研究, (Tel)86- 17660106365(E-mail)2023110117@ stu. sdjzu. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(51975332;62102235); 山东省重点研发计划基金资助项目(2021CXGC011204)

Application of Transfer Learning in Weld Penetration Recognition and Defects Detection

 LIU Wenjie1, LIU Xinfeng1, ZHOU Fangzheng2, TIAN Jie3, JIA Chuanbao2, SONG Lili   

  1. 1. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China; 2. School of Materials Science and Engineering, Shandong University, Jinan 250061, China; 3. School of Data and Computer Science, Shandong Women’s University, Jinan 250300, China
  • Received:2024-06-28 Online:2025-08-15 Published:2025-08-14

摘要: 基于监督学习的深度神经网络焊接技术在实际工业场景中,难以获取带有标签的数据样本,限制了深度网络模型的性能。而针对无标注或不完整标注数据集,迁移学习算法提供了一种新颖的解决方案。为此,从领域自适应和预训练-微调两个方面阐述了迁移学习算法,并从近年来算法发展历程和在焊接熔透识别和缺陷 检测中的应用方面归纳总结了当前已有的研究工作。 同时, 还探讨了焊接领域未来需要更多关注和探索的 迁移学习问题。通过迁移学习的方法,可以更好地利用已有数据和知识,提升深度学习模型在焊接领域的效果 及焊接熔透识别和焊接缺陷检测的准确度,从而推动智能焊接制造技术的发展。

关键词: 焊接, 迁移学习, 焊接熔透, 焊接缺陷, 深度学习

Abstract:  Deep neural network techniques based on supervised learning have been extensively employed in the field of welding. However, in real industrial scenarios, obtaining labeled data samples is challenging, which limits the performance of deep network models. For unlabeled or partially labeled datasets, transfer learning algorithms offer a novel solution. Transfer learning algorithms in terms of domain adaptation and pre-training-fine- tuning are introduced and a summary of current research on their development over recent years and their applications in weld penetration identification and defect detection is provided. And transfer learning issues in welding that require further attention and exploration in the futureis highlighted. Transfer learning methods can enhance the effectiveness of deep learning models by better utilizing existing data and knowledge in the welding field, specifically in weld penetration recognition and welding defect detection accuracy. This promotes the development of intelligent welding manufacturing technology. 

Key words: welding, transfer learning, welding penetration, welding defect, deep learning

中图分类号: 

  • TP391