吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 814-821.

• • 上一篇    下一篇

基于模糊Markov 博弈算法的网络潜在攻击监测

 胡斌,王越,杨浩,马平   

  1. 西北核技术研究所五室,西安710024
  • 收稿日期:2023-07-04 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:胡斌(1980— ), 男, 河南汝南人, 西北核技术研究所工程师, 主要从事计算机科学与技术研究, (Tel)86-17392819317 (E-mail)hhyyjiul@126. com。
  • 基金资助:
    陕西省自然科学研究计划基金资助项目(DLBD2020CG615-BZ)

otential Network Attack Monitoring Based on Fuzzy Markov Game Algorithm

HU Bin, WANG Yue, YANG Hao, MA Ping   

  1. Room 5, Northwest Institute of Nuclear Technology, Xi’an 710024 China
  • Received:2023-07-04 Online:2025-08-15 Published:2025-08-15

摘要: 针对网络节点脆弱,潜在攻击行为较多且交集情况冗余,导致特征识别精度以及分类效果较差,监测 稳定性和效率较低的问题,研究了基于模糊Markov博弈算法的网络潜在攻击监测。利用融合度压缩感知方法和特征识别度参数分析方法,分析网络潜在攻击特征的随机离散分布序列,提取和分析网络潜在攻击谱特征量; 采取随机森林算法,区分网络潜在攻击类型,进行了网络潜在攻击风险模糊Markov博弈分析; 依据风险状态集,结合最小最大化原则,监测网络潜在攻击风险。算例测试结果表明,应用所提方法,设置了潜在攻击行为参数,潜在攻击识别率波动较小, 模糊Markov 博弈分析结果与实际风险值最为接近, 具有较高的识别精度、监测效率和监测稳定性。

关键词: 网络潜在攻击, 特征提取, 随机森林, 风险模糊Markov博弈分析

Abstract: The network nodes are fragile, with many potential attack behaviors and redundant intersection situations, resulting in poor feature recognition accuracy and classification performance and low monitoring stability and efficiency. Therefore, a network potential attack monitoring based on fuzzy Markov game algorithm was studied. Using the fusion degree compressed sensing method and the feature recognition degree parameter analysis method, the random discrete distribution sequence of network potential attack characteristics is analyzed, the characteristics of network potential attack spectrum is also extracted and analyzed. The random forest algorithm is adopted to distinguish the types of potential network attacks, and the fuzzy Markov game analysis of potential network attack risk is carried out. According to the risk state set and the principle of minimum and maximum, the potential network attack risk is monitored. The test results of the example show that after the proposed method is applied, potential attack behavior parameters are set, and the fluctuation of potential attack recognition rate is small. The fuzzy Markov game analysis results are closest to the actual risk value, and have high recognition accuracy, monitoring efficiency, and monitoring stability. 

Key words: potential network attacks, feature extraction, random forest, risk fuzzy Markov game analysis

中图分类号: 

  • TP393