吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 851-862.

• • 上一篇    下一篇

基于注意力机制的井场小目标泄露检测算法 

聂永丹,肖 坤,张林军,汪靖哲,张 岩   

  1. 东北石油大学,计算机与信息技术学院,黑龙江大庆163318
  • 收稿日期:2024-02-03 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:聂永丹(1980—), 女, 吉林梅河口人, 东北石油大学副教授, 硕士, 主要从事数字图像处理、 虚拟现实、 机器学习等 研究, (Tel)86-18345978528(E-mail)nieydzy@163. com。
  • 基金资助:
    东北石油大学特色科研团队基金资助项目(2023TSTD-04)

Leakage Detection Algorithm for Small Targets in Well Sites Based on Attention Mechanism

NIE Yongdan, XIAO Kun, ZHANG Linjun, WANG Jingzhe, ZHANG Yan   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2024-02-03 Online:2025-08-15 Published:2025-08-15

摘要: 针对目前井场抽油机泄露目标检测方法忽视井场泄漏检测的特殊需求,在对井场泄漏目标进行特征识的过程中存在一些局限性的问题, 提出一种基于注意力机制的井场小目标泄露检测算法。以YOLOv5(You Only Look Once 5)网络为基础, 在主干网络中引入通道和时空注意力模块, 获取到更多的特征判别信息, 以增强模型对重要特征的关注。同时,在主干网络中多引出了一个小目标检测尺度,使网络更多地融合小目标物 体的特征信息,加强小目标的检测能力。并在井场泄露数据集上对该算法的有效性进行验证 实验结果表明, 相较同类算法,该方法具有更高的识别准确率,可为油田井场泄露自动检测的实际应用提供参考。

关键词: 井场泄露, 小目标检测, 特征融合, 注意力机制

Abstract: The leakage of well site pumping units is an important issue that affects the safety production and stable operation of oil fields. The current object detection methods often overlook the special requirements of well site leakage detection, and there are some limitations in the process of feature recognition of well site leakage targets. An attention mechanism leak detection algorithm for small targets in well sites is proposed based on the YOLOv5(You Only Look Once 5) network, introducing channels and spatiotemporal attention modules into the backbone network, to obtain more feature discrimination information, to enhance the model’s attention to important features. An additional small object detection scale has been introduced in the backbone network, which enables the network to integrate more feature information of small target objects and enhance the detection ability of small targets. The effectiveness of the proposed algorithm is validated on a dataset of well site leaks. The experimental results showed that compared to similar algorithms, the proposed method has higher recognition accuracy and can provide reference for the practical application of automatic detection of oil field well site leaks. 

Key words: well site leakage, small target detection, feature fusion, attention mechanism 

中图分类号: 

  • TP391