吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 903-912.

• • 上一篇    下一篇

基于云端的移动式智能车底藏匿物检测系统设计

周逸凡,杨智伟,王粤洋,千承辉   

  1. 吉林大学仪器科学与电气工程学院,长春130026
  • 收稿日期:2024-04-20 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 千承辉(1975— ), 女(朝鲜族), 吉林汪清人, 吉林大学正高级工程师, 主要从事 智能仪器与微弱信号检测研究,(Tel)86-431-88502381(E-mail)qianch@jlu. edu. cn。 E-mail:zhouyf6520@ gmail. com
  • 作者简介:周逸凡(2002— ), 男, 合肥人, 吉林大学本科生, 主要从事仪器科学与技术研究, (Tel)86-18019560412(E-mail) zhouyf6520@ gmail. com
  • 基金资助:
    国家级大学生创新创业基金资助项目(202210183199); 吉林大学实验技术基金资助项目(SYXM2023a012) 

Design of Mobile Intelligent Detection System for Underbody Concealment Based on Cloud Database

ZHOU Yifan, YANG Zhiwei, WANG Yueyang, QIAN Chenghui   

  1. College of Instrument Science and Electrical Engineering, Jilin University, Changchun 130026, China
  • Received:2024-04-20 Online:2025-08-15 Published:2025-08-15

摘要: 针对目前传统安检方法对于车辆底盘表面藏匿的违禁物品的检测效率低、漏检率高、便携性差等不足设计了一个基于云端的移动式智能车底藏匿物检测系统通过机器人、网络通信、图像处理及目标检测等技术,实现藏匿物智能化检测。基于SIFT(Scale-Invariant Feature Transform)算法提取图像特征信息并获取车底局部全景图像,使用YOLOv5(You Only Look Once version 5)深度神经网络模型检测种车底藏匿物搭建云数据库存储车辆信息轮式机器人、上位机、云数据库之间通过TCP/IP(Transmission Control Protocol/Internet Protocol)协议进行通信。经测试该系统能在特定场景下完成车底藏匿物检测图像拼接成功率达81.7%, 目标检测准确率达83.7%, 在车底安检领域具有一定的实用价值。

关键词: 尺度不变特征转换, 图像拼接, YOLOv5模型, 目标检测, 云数据库

Abstract: To tackle the inefficiencies, high miss-detection rates, and poor mobility of conventional security check methods in identifying contraband hidden on vehicle undercarriage surfaces, a cloud-based mobile intelligent underbody concealment detection system has been devised. This system uses robotics, network communication, image processing, and object recognition technologies to enable intelligent inspection. Employing the SIFT(Scale-Invariant Feature Transform) algorithm for feature information extraction from images, the system attains a panoramic view of the vehicle underside. Four categories of undercarriage concealments are detected using the YOLOv5(You Only Look Once version 5) deep neural network model. A cloud database is constructed to archive vehicle data, with TCP/ IP(Transmission Control Protocol/ Internet Protocol) protocol facilitating seamless interactions among the wheeled robot, the supervisory computer, and the cloud database. Preliminary testing confirms the system’s capability to conduct underbody concealment inspections within designated contexts, achieving 76.7% success rate in image stitching and 87.2% precision in target detection. Hence, it has considerable practical value for vehicle underbody security check applications.

Key words: scale-invariant feature transform(SIFT), image stitching, you only look once version 5(YOLOv5) model, target detection, cloud database

中图分类号: 

  • TP242