吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (4): 925-935.

• • 上一篇    

基于改进YOLOv5s 的课堂质量评价体系

刘 睿1a, 王丽娟1b, 张晖耀2, 郭启航1a, 林旭东1a   

  1. 1. 广东工业大学 a. 国际教育学院;b. 计算机学院,广州510006;2. 广西大学 机械工程学院,南宁530007
  • 收稿日期:2024-08-19 出版日期:2025-08-15 发布日期:2025-08-15
  • 通讯作者: 王丽娟(1978— ), 女, 河北邢台人, 广东工业大学副教授,硕士生导师,主要从事人工智能、深度学习研究,(Tel)86-15013125905(E-mail)ljwang@ gdut. edu. cn。
  • 作者简介:刘睿(2003— ), 男, 广州人, 广东工业大学本科生,主要从事深度学习、目标检测研究, (Tel)86-13533442474(E-mail) LR030107@163. com
  • 基金资助:
    广东省自然科学基金资助项目(2021A1515012556)

Classroom Quality Evaluation System Based on Improved YOLOv5s

 LIU Rui1a, WANG Lijuan1b, ZHANG Huiyao2, GUO Qihang1a, LIN Xudong1a   

  1. a. School of International Education; 1b. School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China; 2. School of Mechanical Engineering, Guangxi University, Nanning 530007, China
  • Received:2024-08-19 Online:2025-08-15 Published:2025-08-15

摘要: 针对传统课堂质量评价手段主要依靠人工观察, 存在效率低和精度差等问题, 提出了一种基于改进 YOLOv5s(You Only Look Once version 5 small)的轻量化课堂评价模型。通过采用该模型和层次分析法建立完善的课堂评价体系。该模型在颈部网络中融入CBAM(Convolutional Block Attention Module)注意力机制, 提高了模型的识别精度; 通过在骨干网络中融合Ghost模块, 显著降低了模型的复杂度; 通过采用Focal Loss损失 函数,有效地缓解了类别不平衡的问题。实验结果表明,YOLOv5s模型相比,改进后的模型平均精度提升了7. 3%, 参数量减少了42.0%, 计算量减少33.1%, 检测速度提升了4%。最后结合层次分析法和熵权法建立 课堂质量评价体系,动态显示当前课堂质量的评分,可满足实际课堂需求。

关键词: YOLOv5s算法, 层次分析法, 熵权法, 卷积块注意模块, Ghost模块, Focal Loss损失函数

Abstract: Traditional methods of classroom quality evaluation mainly rely on manual observation, which suffers from low efficiency and poor accuracy. To establish a more comprehensive evaluation system, a lightweight classroom evaluation model based on an improved YOLOv5s(You Only Look Once version 5 small) is proposed. By adopting this model and the AHP(Analytic Hierarchy Process), a comprehensive classroom evaluation system is established. The model integrates the CBAM(Convolutional Block Attention Module) attention mechanism into the neck network, enhancing the model’s recognition accuracy. incorporates the Ghost module into the backbone network, significantly reducing the model’s complexity. and utilizes the Focal Loss function to effectively mitigate the problem of class imbalance. Experimental results show that, compared to the YOLOv5s model, the improved model increases average precision by 7. 3%, reduces the number of parameters by 42. 0%, decreases computation by 33. 1%, and improves detection speed by 4%. Finally, a classroom quality evaluation system is established by combining the AHP and the entropy weight method, dynamically displaying the current classroom quality score, which meets the actual needs of the classroom.

Key words: you only look once version 5 small(YOLOv5s), analytic hierarchy process (AHP), entropy weight, convolutional block attention module (CBAM), Ghost module, Focal Loss function 

中图分类号: 

  • TP391.41