吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 937-943.

• •    下一篇

基于 AOA-SVM 的数字孪生管道泄漏识别模型

王冬梅a,b, 宋南南b, 张 丹b, 王 鹏a,b, 路敬祎a,c,d   

  1. 东北石油大学 a. 三亚海洋油气研究院; b. 电气信息工程学院, 海南 三亚 572024;c. 人工智能能源研究院; d. 黑龙江省网络化与智能控制重点实验室, 黑龙江 大庆 163318

  • 收稿日期:2024-04-07 出版日期:2025-09-28 发布日期:2025-11-19
  • 作者简介:王冬梅(1977— ), 女, 黑龙江肇州人, 东北石油大学副教授, 硕士生导师, 主要从事信号处理、 油气管道泄漏信号检测以及人工智能等研究, (Tel)86-18745977956(E-mail)wdmljy@ 126. com。
  • 基金资助:

    国家自然科学基金资助项目(62103096); 海南省科技专项基金资助项目(ZDYF2022SHFZ105); 海南省自然科学基金资助

    项目(623MS071); 春晖计划基金资助项目(HZKY20220314)

Leakage Identification Model of Digital Twin Pipeline Based on AOA-SVM

WANG Dongmeia,b, SONG Nannanb, ZHANG Danb, WANG Penga,b, LU Jingyia,c,d   

  1. a. Sanya Offshore Oil and Gas Research Institute; b. School of Electrical and Information Engineering,Northeast Petroleum University, Sanya 572024, China; c. Artificial Intelligence Energy Research Institute;d. Heilongjiang Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China

  • Received:2024-04-07 Online:2025-09-28 Published:2025-11-19

摘要:

针对油气管道泄漏识别准确率低的问题, 引入数字孪生技术, 构建了基于算术优化算法优化支持向量机(AOA-SVM: Arithmetic Optimization Algorithm-Support Vector Machine)的数字孪生管道泄漏识别模型。 首先利用Ansys 软件构建出油气管道的 3D ROM(3D Reduced Order Model)管道模型; 其次将采集到的管道信号通过 Java接口导入 MySql 数据库, 进而将数据导入 3D ROM 管道模型中; 最后将 AOA-SVM 算法在 Matlab 环境中进行管道信号的工况识别, 并通过 Twin builder 软件将其识别效果以动态形式展现。 为体现 AOA-SVM 工况识别能力的优越性, 在相同信号的基础上, 与其他支持向量机( SVM: Support Vector Machine) 优化算法进行了对比。对比结果表明 AOA-SVM 具有最高的分类准确率, 分类准确率可达到 90. 5% , 即所提数字孪生的识别模型不仅可以模拟管道的泄漏情况, 而且监测可信度较高。

关键词: 支持向量机,  数字孪生,  数字化管道,  3D ROM 模型

Abstract:

To address the problem of low accuracy of oil and gas pipeline leakage identification, the digital twintechnology is introduced, and a digital twin pipeline leakage identification model is constructed based onarithmetic optimisation AOA-SVM(Arithmetic Optimization Algorithm-Support Vector Machine). Firstly, the 3DROM(3D Reduced Order Model) pipeline model of oil and gas pipelines is constructed using Ansys software.Secondly, the collected pipeline signals are imported into MySql database through Java interface, and then thedata are imported into the 3D ROM pipeline model. Finally, the AOA-SVM algorithm is used to carry out the work recognition of the pipeline signals in Matlab environment, and the recognition effect is shown in its dynamic form by Twin builder software. The recognition effect is shown in its dynamic form. In order to show the superiority of AOA-SVM condition recognition ability, it is compared with other popular SVM( Support Vector Machine) optimisation algorithms on the basis of the same signal. The comparison results show that AOA-SVM has the highest classification accuracy, which can reach 90. 5% , i. e. , the recognition model of the proposed digital twin can simulate the leakage of pipelines and has a high monitoring credibility.

Key words: support vector machine, digital twinning, digital pipeline, 3D reduced order model(ROM) model

中图分类号: 

  • TN911. 7