吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 978-987.

• • 上一篇    下一篇

基于多模态决策融合的抽油机故障诊断方法

张 强1, 薛 冰1, 王伯超2, 陈 诚1, 陆俊翼1   

  1. 1. 东北石油大学 计算机与信息技术学院,黑龙江大庆163318; 2. 大庆油田有限责任公司第五采油厂数字化运维中心,黑龙江大庆163311
  • 收稿日期:2024-09-10 出版日期:2025-09-28 发布日期:2025-11-19
  • 通讯作者: 薛冰(2000— ), 女, 黑龙江绥化人, 东北石油大学硕士研究生, 主要从事深度 学习、 故障诊断研究,(Tel)86-18845890390(E-mail)2531110304@ qq. com。 E-mail:2531110304@ qq. com
  • 作者简介:张强(1982— ), 男, 黑龙江牡丹江人, 东北石油大学教授, 主要从事深度学习、 智能计算研究, (Tel)86-13796989561 (E-mail)nepu_zq@163. com
  • 基金资助:
    国家自然科学基金资助项目(42002138); 黑龙江省自然科学基金资助项目(LH2022F008); 黑龙江省博士后专项基金资助 项目(LBH-Q20077); 黑龙江省优秀青年教师基础研究支持计划基金资助项目(YQJH2023073) 

Pumping Unit Fault Diagnosis Method Based on Multimodal Decision Fusion 

 ZHANG Qiang1, XUE Bing1, WANG Bochao2, CHEN Cheng1, LU Junyi1   

  1. College of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China; 2. Digital Operation and Maintenance Center, the Fifth Oil Extraction Plant of Daqing Oilfield Company, Daqing 163311, China
  • Received:2024-09-10 Online:2025-09-28 Published:2025-11-19

摘要: 针对现有抽油机故障诊断多数基于示功图数据, 导致其诊断模态相对单一的问题, 提出一种 ShuffleNetV2ECA-MLP(ShuffleNetV2 with Efficient Channel Attention and Multilayer Perceptron)多模态决策融合的抽油机故障诊断模型。 为提高ShuffeNetV2 模型跨通道交互能力和识别精度, 首先将轻量通道注意力ECA (Efficient Channel Attention)模块引入 ShuffleNetV2 模型中, 应用 Hardswish 激活函数增强网络学习复杂问题的能力; 其次利用改进后的ShuffleNetV2 网络对示功图诊断, 同时利用多层感知机(MLP: Multi-Layer Perceptron) 网络处理生产动态数据; 最后采用加权投票方法整合两个模型的诊断结果。 为验证改进ShuffleNetV2 ShuffleNetV2ECA-MLP 模型有效性, 与轻量级卷积网络 MobileNetV2 MobileNetV3、 经典卷积网络 ResNet 以及 VGG(Visual Geometry Group)网络模型进行对比。 实验结果表明, ShuffleNetV2ECA-MLP 模型的存储空间仅为 10. 16 MByte, 故障诊断精度达到95.35%, 能更好满足抽油机故障诊断需求。 

关键词: 示功图, ShuffleNetV2 模型,  多层感知机,  注意力机制,  故障诊断,  多模态

Abstract: Aiming at the problem that most of the existing pumping unit fault diagnosis is based on indicator diagram, which leads to a relatively single diagnostic modality, a ShuffleNetV2ECA-MLP (ShuffleNetV2 with Efficient Channel Attention and Multilayer Perceptron, ShuffleNetV2ECA-MLP) multimodal decision fusion fault diagnosis model is proposed for pumping units. In order to improve the cross-channel interaction capability and recognition accuracy of the ShuffleNetV2 model, firstly, the ECA(Efficient Channel Attention) module with lightweight channel attention is introduced into the ShuffleNetV2 model, and the Hardswish activation function is applied to enhance the network蒺s ability to learn complex problems. Secondly, the improved ShuffleNetV2 network is used to diagnose the figure of merit, and the MLP(Multi-Layer Perceptron) network is used to process the production dynamic data. Finally, the diagnostic results of the two models are integrated using the weighted voting method. In order to verify the effectiveness of the improved ShuffleNetV2 and ShuffleNetV2ECA-MLP models, comparisons are made with the lightweight convolutional networks MobileNetV2, MobileNetV3, the classical convolutional network ResNet, and the VGG ( Visual Geometry Group) network model. The experimental results show that the storage space of the ShuffleNetV2ECA-MLPmodel is only 10. 16 MByte, and the fault diagnosis accuracy reaches 95. 35% , which better meets the needs of pumping unit fault diagnosis.

Key words: indicator diagram, ShuffleNetV2 model, multi-layer perceptron(MLP), attention mechanism, fault diagnosis, multimodality

中图分类号: 

  • TP183