吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1051-1057.

• • 上一篇    下一篇

基于轻量化高分辨率网络的人体姿态估计方法

张耀平,李井泉,裘昌利,石静苑,汤艳坤,陈大川    

  1. 空军航空大学航空基础学院,长春130012
  • 收稿日期:2023-12-01 出版日期:2025-09-28 发布日期:2025-11-19
  • 作者简介:张耀平(1979— ), 男, 长春人,空军航空大学讲师,主要从事机器视觉研究,(Tel)86-431-86956419(E-mail)cacique2000 @buaa. edu. cn。
  • 基金资助:
    吉林省教育厅科学技术研究基金资助项目(JJKH20231336CY); 空军装备综合研究基金资助项目(KJ2021C0120003) 

Human Pose Estimation Method Based on Improved High-Resolution Network

ZHANG Yaoping, LI Jingquan, QIU Changli, SHI Jingyuan, TANG Yankun, CHEN Dachuan   

  1. Basic Aviation College, Air Force Aviation University, Changchun 130012, China
  • Received:2023-12-01 Online:2025-09-28 Published:2025-11-19

摘要: 针对现有的人体姿态估计方法在动作评判场景下的准确度有待提高,并且方法依赖于高性能计算设备, 在边缘计算设备上的推理速度有待增强的问题,对经典的高分辨率网络模型进行了轻量化改进,同时针对动作评判场景中频繁出现的遮挡问题,对数据集中的图片进行随机擦除,增强算法鲁棒性。 实验对比表明,该改进方法在保证姿态估计准确率的同时,显著降低了模型的参数量,提高了模型的推理速度,并且算法对遮挡问题表现出更强的鲁棒性。 改进的方法能满足动作评判场景的需要。

关键词: 人体姿态估计, 高分辨率网络, 轻量化, 遮挡 

Abstract: The accuracy of the existing estimation methods of human pose in the motion evaluation scene needs to be further improved. The methods rely on high-performance computing devices, and the reasoning speed on edge computing devices needs to be further enhanced. Therefore, improvement is made to the classic high-resolution network model to solve the problem of low real-time performance of the existing human pose estimation methods. To address the frequent occlusion issues in motion evaluation scene, random erasure enhancement is applied to the images in the dataset. After experimental comparison and verification, the improved method significantly reduces the number of model parameters and improves the inference speed of the model while ensuring the accuracy of attitude estimation. The algorithm exhibits stronger robustness for occlusion problems, and the improved method can meet the needs of motion evaluation scenarios.

Key words: human pose estimation, high-resolution network(HRNet), lightweight, occlusion

中图分类号: 

  • TP305