吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1179-1185.

• • 上一篇    下一篇

改进 ResNet 算法的复杂遥感背景目标细粒度识别 

李加军   

  1. 广州华商学院数字经贸学院,广州511399
  • 收稿日期:2023-11-16 出版日期:2025-09-28 发布日期:2025-11-20
  • 作者简介:李加军(1982— ), 男, 安徽无为人, 广州华商学院副教授, 主要从事大数据研究, (Tel)86-13642783280 (E-mail) gaga00231@163. com。
  • 基金资助:
    广州华商学院校内导师制科研基金资助项目(2022HSDS12); 广州华商学院2021年重点学科项目校级重点学科-国际商务 基金资助项目(2021HSXK05) 

Improved ResNet Algorithm for Fine-Grained Recognition of Complex Remote Sensing Background Targets

LI Jiajun   

  1. School of Digital Economics and Trade, Guangzhou Huashang College, Guangzhou 511399, China
  • Received:2023-11-16 Online:2025-09-28 Published:2025-11-20

摘要: 考虑到遥感影像的大规模和高维特征,复杂遥感应用过程需要进行合适的特征提取和选择,同时进一步区分同类目标的不同子类别,为此,提出改进残差网络(ResNet: Residual Network)算法的复杂遥感背景目标细粒度识别方法。 使用非均值滤波算法标记带噪遥感图像的坐标域,计算像素点之间相似度,对复杂遥感图像进行去噪。 基于去噪结果,提取图像全局、局部特征点,通过特征点融合结果获取全局、局部特征图。 引入改进残差网络算法,分析每个背景图像块区域像素细粒度,经过残差学习后,结合图像像素位置与损失函数, 二次利用分类器确定像素细粒度特征,完成背景目标细粒度识别。 实验结果表明,图像清晰度较高,随着待识别图像的不断增加,F1 -Score与全局召回率都得到了不同程度的改善,增益误差较低。

关键词: 改进ResNet算法, 复杂遥感图像, 图像去噪, 背景目标, 细粒度识别

Abstract: Considering the large-scale and high-dimensional features of remote sensing images, the complex remote sensing application process requires appropriate feature extraction and selection, while further distinguishing different subcategories of similar targets. Therefore, an improved ResNet(Residual Network) algorithm is proposed for fine-grained recognition of complex remote sensing background targets. Non mean filtering algorithm is used to label the coordinate domain of noisy remote sensing images, calculate the similarity between pixels, and denoise complex remote sensing images. Based on the denoising results, global and local feature points of the image are extracted, and global and local feature maps are obtained through feature point fusion results. An improved residual network algorithm is introduced to analyze the fine-grained pixel size of each background image block area. After residual learning, combined with the image pixel position and loss function, a classifier is used twice to determine the fine-grained pixel features and complete the fine-grained recognition of background targets. The experimental results show that the image clarity is high, and as the number of images to be recognized continues to increase, F1 -Score and global recall rates have been improved to various degrees, with lower gain errors. 

Key words: improved ResNet algorithm, complex remote sensing images, image denoising, background objectives, fine grained recognition 

中图分类号: 

  • TP75