吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1222-1229.

• • 上一篇    下一篇

对称差分算法下人体运动轨迹图像分割技术

王 莉1 , 蔡路路2   

  1. 1. 安徽三联学院 体育部, 合肥 230601; 2. 安徽师范大学 体育学院, 安徽 芜湖 241003
  • 收稿日期:2023-12-01 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:王莉(1985—), 女, 安徽铜陵人, 安徽三联学院副教授, 博士, 主要从事体育运动教学与训练研究, ( Tel) 86- 15395321936(E-mail)look-lulu@ 163. com。
  • 基金资助:
    安徽省高校科研基金资助项目(2023AH051677); 安徽省级质量工程一般教学研究基金资助项目(2022jyxm493)

Image Segmentation Technology of Human Motion Trajectory Based on Symmetric Difference Algorithm

WANG Li1, CAI Lulu2   

  1. 1. Sports Department, Anhui Sanlian University, Hefei 230601, China;2. Physical Education lnstitute, Anhui Normal University, Wuhu 241003, China
  • Received:2023-12-01 Online:2025-12-08 Published:2025-12-08

摘要:

针对在实际场景中, 人体与背景之间存在相似的颜色和纹理, 且人体运动涉及姿态的多样性, 在其复杂多变的背景下运动, 使分割出人体轨迹较为困难的问题, 提出对称差分算法下人体运动轨迹图像分割技术。采用七帧对称差分算法提取人体运动图像序列的前 3 帧和后 3 帧图像, 计算其绝对差分图像, 获取人体运动目标区域; 采用非参数的统计迭代(Mean Shift)算法提取像素模值点分布情况, 生成超像素, 利用非参数贝叶斯聚类模型融合超像素提取人体运动目标轮廓; 利用高斯混合模型建立人体运动轨迹模型, 采用极限学习机求解模型识别人体运动轨迹, 实现人体运动轨迹图像分割。实验结果表明, 所提方法 IOU( Intersection Over Union)值最高可达 97% , 提取运动目标区域和识别运动轨迹精度较高、分割性能较好, 适用于人体运动轨迹图像分割。

关键词:

Abstract:

In the actual scene, there are similar colors and textures between the human body and the background, and the movement of the human body involves diversity of gestures. In this complex and changeable background, it is difficult to segment the trajectory of the human body. Therefore, an image segmentation technique based on symmetric difference algorithm is proposed. The seven-frame symmetric difference algorithm is used to extract the first three frames and the last three frames of the human motion image sequence, the absolute difference images are calculated, and the human motion target region is obtained. A non-parametric statistical iteration (Mean Shift) algorithm is used to extract the distribution of pixel modulus points and generate superpixels. A non-parametric Bayesian clustering model is used to fuse superpixels and to extract the contours of human moving objects. Gaussian mixture model is used to establish human trajectory model, and extreme learning machine is used to solve the model recognizing human trajectory and realize human trajectory image segmentation. The experimental results show that the IOU ( Intersection Over Union) value of the proposed method can reach up to 97% , and has high precision of extracting moving target region, high precision of identifying moving trajectory and good segmentation performance, and is suitable for human motion trajectory image segmentation.

Key words:

中图分类号: 

  • TP391