吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1237-1243.

• • 上一篇    下一篇

基于多特征融合的电能质量扰动信号调制算法

田野   

  1. 中国人民解放军总医院海南医院 医学工程科, 海南 三亚 572013
  • 收稿日期:2024-08-01 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:田野(1984—), 男, 海南三亚人, 中国人民解放军总医院海南医院工程师, 主要从事电子及智能化设备管理、 医用电子 技术研究, (Tel)86-15692537903(E-mail)tianyetianyi@ 126. com。
  • 基金资助:
    海南省教育厅基金资助项目(Hnjgzc2023-93)

Modulation Algorithm for Signals of Power Quality Disturbance Based on Multi Feature Fusion

TIAN Ye   

  1. Medical Engineering Department, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
  • Received:2024-08-01 Online:2025-12-08 Published:2025-12-08

摘要:

针对电能质量扰动导致电压、电流波形畸变, 并且不同形式的畸变造成电能质量信号在时域和频域上表现出复杂的特征, 增加了信号分析和处理的难度问题, 以多特征融合为基本手段, 提出电能质量扰动信号调制算法, 使信号更易高效地实现检测和识别。从 S 变换、小波变换得到的所有电能质量扰动信号特征中, 利用分类回归树和基尼重要度, 选择出具有表征性的时域信号特征和频域信号特征, 并通过主成分分析法完成多特征融合。根据 LSTM(Long Short-Term Memory)基于融合特征给出的电能质量扰动信号类别, 由信号生成器输出调制后的电能质量扰动信号。实验结果表明, 选取的信号特征的信噪比值均超过 90 dB, 具有较强的表征能力;该算法调制的信号具有较强的易识别性, 单一和复杂类型均能实现准确识别; 频率偏差在±0. 1 Hz 范围内小幅波动, 电能质量有显著提高。

关键词:

Abstract:

Power quality disturbances cause distortion of voltage and current waveforms, and different forms of distortion result in complex characteristics of power quality signals in both time and frequency domains,increasing the difficulty of signal analysis and processing. Therefore, based on multi feature fusion, a modulation algorithm for signals of power quality disturbance is proposed to make signal detection and recognition easier and more efficient. From all the characteristics of power quality disturbance signals obtained from S-transform and wavelet transform, using classification regression tree and Gini importance, representative time-domain signal features and frequency-domain signal features are selected, and multi feature fusion is completed through principal component analysis. According to the LSTM ( Long Short-Term Memory) based fusion feature, the category of power quality disturbance signal is given, and the modulated power quality disturbance signal is output by the signal generator. The experimental results show that the signal-to-noise ratio of the selected signal features exceeds 90 dB, indicating strong representational ability. The signal modulated by this algorithm has strong recognizability, and both single and complex types can be accurately identified. The frequency deviation fluctuates slightly within the range of ±0. 1 Hz, indicating a significant improvement in power quality.

Key words:

中图分类号: 

  • TP391