吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1269-1277.

• • 上一篇    下一篇

基于多新息扩展卡尔曼滤波的PMSM模型预测控制

邵克勇1 , 朱明萱1 , 陈 超2 , 常正胜2   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 大庆油田有限责任公司 天然气分公司, 黑龙江 大庆 163411
  • 收稿日期:2025-03-04 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:邵克勇(1972—), 男, 河南淮阳人, 东北石油大学教授, 硕士生导师, 主要从事分数阶系统控制理论及应用研究, (Tel) 86-13945931672(E-mail)shaokeyongauto@ 163. com。
  • 基金资助:
    黑龙江省重点研发基金资助项目(ZDYF2024GXJS007); 黑龙江省属高校专项基金资助项目(2022TSTD-04)

Model Predictive Control of PMSM Based on Multi-Innovation Extended Kalman Filter

SHAO Keyong1, ZHU Mingxuan1, CHEN Chao2, CHANG Zhengsheng2   

  1. 1. College of Electrical and Information Engineering, Northeast Petroleum University, Daqing 163318, China;2. Natural Gas Branch, Daqing Oilfield Limited Liability Company, Daqing 163411, China
  • Received:2025-03-04 Online:2025-12-08 Published:2025-12-08

摘要:

针对永磁同步电机在实际应用过程中控制性能的优劣对参数依赖性较高的问题, 对无差拍模型预测控制系统进行研究, 将多新息理论引入扩展卡尔曼滤波参数辨识算法中, 构建不同新息长度下的多新息扩展卡尔曼滤波算法。通过实验对比验证表明, 基于多新息扩展卡尔曼滤波观测算法辨识出的电感和磁链参数优于传统扩展卡尔曼滤波算法。通过将多新息扩展卡尔曼滤波算法和无差拍模型预测控制相结合获得准确的参数标称值, 解决了系统不确定性导致的无差拍模型预测控制性能下降问题, 使转速和定子电流的谐波更小, 可以获得永磁同步电机控制系统较好的动态性能和鲁棒性。

关键词:

Abstract:

To address the high pa we conduct a study on rameter dependency of control performance in PMSM(Permanent Magnet Synchronous Motor), the DPCC(Dead-beat Predictive Current Control) system is studied,incorporated the MI(Multi-Innovation) theory into the EKF(Extended Kalman Filter) parameter identification algorithm. Simulation models of the MI-EKF(multi-innovation extended Kalman filter) with different innovation lengths and the conventional EKF are constructed. Experimental results demonstrate that the inductance and flux linkage parameters identified by the MI-EKF observation algorithm exhibit superior steady-state and dynamic performance compared to the EKF algorithm. By combining MI-EKF and DPCC to obtain accurate parameter nominal values, the issue of DPCC performance degradation caused by system uncertainty is resolved. The harmonics of rotor speed and stator current is reduced achieving better dynamic performance and robustness in the PMSM control system.

Key words:

中图分类号: 

  • TP273