吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1337-1345.

• • 上一篇    下一篇

基于VMD-Transformer的滚动轴承故障诊断

刘延军, 盛廉杰, 许建华, 张 强   

  1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2024-09-30 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 盛廉杰(1999— ), 男, 河南平舆人, 东北石油大学硕士研究生,主要从事轴承故障诊断研究, (Tel)86-13299128129(E-mail)772533485@ qq. com。 E-mail:772533485@ qq. com
  • 作者简介:刘延军(1978— ), 男, 山东青州人, 东北石油大学副教授, 主要从事工业设备故障预诊断与健康管理研究, ( Tel)86-18904596308(E-mail)lyj1978@ nepu. edu. cn
  • 基金资助:
    黑龙江省博士后专项基金资助项目(LBH-Q20077)

Fault Diagnosis of Rolling Bearing Based on VMD-Transformer

LIU Yanjun, SHENG Lianjie, XU Jianhua, ZHANG Qiang   

  1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
  • Received:2024-09-30 Online:2025-12-08 Published:2025-12-08

摘要:

针对滚动轴承故障诊断中单一传感器信息不足及复杂环境下诊断率偏低的问题, 提出了一种基于变分模态分解(VMD: Variational Mode Decomposition) 和多头交叉注意力机制的多模态融合方法。其通过对声振信号的自适应分解, 提取关键本征模态分量(IMFs: Intrinsic Mode Functions), 并利用交叉注意力机制对声振信号特征进行交互融合, 从而实现多模态信息的深度提取与噪声抑制。最后通过 Softmax 分类器进行故障识别。实验结果表明, 所提方法有效降低了噪声干扰, 显著提高了故障诊断准确率, 相较传统方法表现出更高的鲁棒性和精度。

关键词:

Abstract:

To address the limitations of single-sensor information and the low diagnostic accuracy of rolling bearing fault diagnosis in complex environments, a multimodal fusion method based on VMD(Variational Mode Decomposition) and a multi-head cross-attention mechanism is proposed. Acoustic and vibration signals are adaptively decomposed to extract key IMFs ( Intrinsic Mode Functions). A cross-attention mechanism is then employed to interactively fuse the features of acoustic and vibration signals, enabling deep multimodal feature extraction and noise suppression. Fault identification is performed using a Softmax classifier. Experimental results demonstrate that the proposed method effectively reduces noise interference and significantly improves diagnostic accuracy, exhibiting greater robustness and precision compared to traditional approaches.

Key words:

中图分类号: 

  • TP18