吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 9-17.

• • 上一篇    下一篇

基于并行特征融合网络的雷达信号分类方法

杨 翼, 胡远江, 吴湘宁, 潘志鹏, 王梦雪   

  1. 中国地质大学(武汉) 计算机学院, 武汉 430078
  • 收稿日期:2024-09-18 出版日期:2026-01-31 发布日期:2026-01-30
  • 通讯作者: 吴湘宁(1972— ), 男, 湖南衡阳人, 中国地质大学(武汉)副教 授, 主要从事人工智能、 数据科学与大数据技术、 地学信息处理研究, (Tel)86-15342350200(E-mail)wxning@ cug. edu. cn
  • 作者简介:杨翼(2001— ), 女, 河南信阳人, 中国地质大学( 武汉) 硕士研究生, 主要从事信号分类与识别研究, ( Tel) 86- 13720396568(E-mail)yangyi_@ cug. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(U21A2013) ; 湖北省自然科学基金资助项目(2021CFB506)

Radar Signal Classification Method Based on Parallel Feature Fusion Networks

YANG Yi, HU Yuanjiang, WU Xiangning, PAN Zhipeng, WANG Mengxue   

  1. School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430078, China
  • Received:2024-09-18 Online:2026-01-31 Published:2026-01-30

摘要: 针对目前大部分基于神经网络的雷达调制信号识别算法仅依赖于单一信息源, 而忽视了利用多个模态 信息特征的优势互补性问题, 提出了一种基于信号一维序列和二维时频图的多模态并行特征融合模型。 首先, 在时序特征提取模块中引入时间二维变化建模的思想提取时序特征, 在频域特征提取模块引入带线性瓶颈层 的逆残差结构提取频域特征。 然后, 通过引入两种不同的注意力机制以及残差连接, 有效实现了多模态特征的 互补性融合。 在 DeepRadar2022 和自建数据集上的实验结果表明, 该模型在提供更为丰富的特征表征方面取得 了显著成果, 具有较高的分类准确率并表现出良好的抗噪性。

关键词: 雷达调制信号识别, 特征融合, 注意力机制, 时序二维变化, 逆残差模块

Abstract: At present, the majority of neural network-based radar modulation signal recognition algorithms predominantly rely on a single source of information, overlooking the potential benefits that arise from the synergistic use of multi-modal information features. To tackle this limitation, a novel multi-modal parallel feature fusion model has been proposed, which leverages both one-dimensional signal sequences and two-dimensional time-frequency representations. Initially, the temporal feature extraction module incorporates a two-dimensional temporal change modeling approach to capture temporal dynamics, while the frequency domain feature extraction module employs an inverse residual structure with a band linear bottleneck layer to extract spectral features. Subsequently, the integration of two distinct attention mechanisms, along with residual connections, facilitates an effective fusion of multi-modal features, enhancing their complementary nature. Empirical evaluations conducted on DeepRadar2022 and self-built datasets demonstrate that this model provides a more comprehensive feature representation achieves higher classification accuracy and exhibits noise resilience, making it a promising solution for advanced radar signal processing applications.

Key words: radar modulation signals recognition, feature fusion, attention mechanisms, temporal two- dimensional changes, inverse residual module

中图分类号: 

  • TN911. 3