吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 192-198.

• • 上一篇    下一篇

基于特征提取与增强的地铁安检 X 光违禁物智能识别算法

冯利涛1 , 刘 杰2 , 王 逸3   

  1. 1. 成都地铁运营有限公司, 成都 610058; 2. 成都智元汇信息技术股份有限公司, 成都 610000; 3. 西南交通大学 交通运输与物流学院, 成都 611756
  • 收稿日期:2025-06-06 出版日期:2026-01-31 发布日期:2026-02-04
  • 通讯作者: 刘杰(1982— ), 男, 成都人, 成都智元汇信息技术股份有限公司工程师, 主要从事轨道 交通研究, (Tel)86-13982092326(E-mail)LiujieJielll@ 163. com
  • 作者简介:冯利涛(1992— ), 男, 成都人, 成都地铁运营有限公司工程师, 主要从事电子技术研究, (Tel)86-13551322458(E-mail) 493423119@ qq. com
  • 基金资助:
    四川省科学技术厅-科技成果转移转化示范基金资助项目(2023ZHCG0018) 

Intelligent Recognition Algorithm of X-Ray Contraband in Subway Security Inspection Based on Feature Extraction and Enhancement

FENG Litao 1 , LIU Jie 2 , WANG Yi 3   

  1. 1. Chengdu Metro Operation Company Limited, Chengdu 610058, China; 2. Chengdu Zhiyuanhui Information Technology Company Limited, Chengdu 610000, China; 3. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2025-06-06 Online:2026-01-31 Published:2026-02-04

摘要:  针对地铁安检 X 光图像中由于违禁物与背景物质存在复杂的密度重叠和纹理干扰, 导致特征表征能力 不足, 难以有效区分违禁物与正常物品; 同时, 传统方法在特征提取过程中容易丢失细小违禁物的关键空间信 息, 最终导致检测系统出现严重的漏检和误检问题, 提出了基于特征提取与增强的地铁安检X 光违禁物智能识 别算法。 构建基于改进 SSD-VGG16( Single Shot MultiBox Detector-Visual Geometry Group 16)的多尺度特征提取 框架, 通过新增 Conv3_3 细节捕获层和 Conv5_3 细小物体敏感层强化对违禁物微观特征的提取能力, 并采用 特征融合技术整合 Conv4_3 等基础网络层的语义信息, 显著提升了特征表征的完备性; 同时引入空间注意力 机制, 通过分解聚合特征获取 X-Y 双向注意力向量, 有效聚焦于违禁物关键区域, 嵌入 ECA(Efficient Channel Attention)通道注意力模块实施交叉信道交互学习, 实现了对违禁物判别性特征的动态增强; 采用 DIoU-NMS (Distance-Intersection over Union Non-Maximum Suppression)算法综合考虑目标框重叠率和中心距离进行优化筛 选, 大幅降低了密集场景下的漏检率; 通过自适应阈值分割方法, 结合维纳滤波和中值滤波预处理技术消除图 像噪声干扰, 依据灰度或伪彩色分布特征实现违禁物的精确区域分割, 实现了 X 光违禁物识别。 由实验结果 可知, 该算法识别的金属刀、 火机、 玻璃瓶对应的像素亮度分别为 255、 153、 51, 与实验指标一致, 能精准识别 出各种违禁物。

关键词:  , 特征提取, 特征增强, 地铁安检 X 光, 违禁物, 智能识别

Abstract: Due to the complex density overlap and texture interference between prohibited items and background materials in subway security X-ray images, the feature representation ability is insufficient, making it difficult to effectively distinguish prohibited items from normal items. The traditional methods are prone to losing key spatial information of small prohibited objects during feature extraction, ultimately leading to serious missed and false detections in detection systems. To address this issue, a subway security X-ray prohibited object intelligent recognition algorithm based on feature extraction and enhancement is proposed. A multi-scale feature extraction framework is constructed based on improved SSD-VGG16(Single Shot MultiBox Detector-Visual Geometry Group 16). The ability to extract microscopic features of prohibited objects is enhanced by adding Conv3 _3 detail capture layer and Conv5_3 small object sensitivity layer, and integrating semantic information from Conv4_3 and other basic network layers using feature fusion technology, significantly improving the completeness of feature representation; On this basis, a spatial attention mechanism is introduced to obtain X-Y bidirectional attention vectors by decomposing and aggregating features, effectively focusing on key areas of prohibited items. At the same time, an ECA( Efficient Channel Attention) channel attention module is embedded to implement cross channel interactive learning, achieving dynamic enhancement of discriminative features of prohibited items; By using the DIoU-NMS (Distance-Intersection over Union Non-Maximum Suppression)algorithm to comprehensively consider the target box overlap rate and center distance for optimization screening, the missed detection rate in dense scenes is significantly reduced; By using adaptive threshold segmentation method and combining Wiener filtering and median filtering preprocessing techniques to eliminate image noise interference, accurate area segmentation of prohibited objects is achieved based on grayscale or pseudo color distribution characteristics, thereby realizing X-ray prohibited object recognition. According to the experimental results, the pixel brightness corresponding to the metal knife, fire machine, and glass bottle recognized by the algorithm is 255, 153, and 51, respectively, which is consistent with the experimental indicators and can accurately identify various prohibited items.

Key words: feature extraction, feature enhancement, subway security X-ray, contraband, intelligent identification

中图分类号: 

  • TP311. 13