J4 ›› 2011, Vol. 29 ›› Issue (03): 213-.

• 论文 • 上一篇    下一篇

Circulant矩阵构造准循环LDPC码的旋转环长分析法

齐行行|DOUGLAS Leith   

  1. 爱尔兰国立梅努斯大学 汉米尔顿研究所, 爱尔兰
  • 出版日期:2011-05-20 发布日期:2011-06-27
  • 通讯作者: 齐行行(1982— ),男,河北平乡人,爱尔兰国立梅努斯大学博士研究生,主要从事信息论、信道编码和无线网络通信研究,(Tel)00353872646058 E-mail:forrestqihang@hotmail.com;
  • 作者简介:齐行行(1982— )|男|河北平乡人|爱尔兰国立梅努斯大学博士研究生|主要从事信息论、信道编码和无线网络通信研究|(Tel)00353872646058(E-mail)forrestqihang@hotmail.com;Douglas Leith(1964— ),男|苏格兰格拉斯哥人|爱尔兰国立梅努斯大学教授|主要从事网络通信和控制研究,(E-mail)doug.Leith@nuim.ie。

Rotation-Distance Analysis of QC-LDPC Code Based on Circulant Permutation Matrices

QI Hang-hang|DOUGLAS Leith   

  1. Hamilton Institute
    National University of Ireland,
    Maynooth, Co. Kildare, Ireland
  • Online:2011-05-20 Published:2011-06-27

摘要:

低密度奇偶检验(QC-LDPC:Quasi-Cyclic Low-Density Parity-Check) 码的环长分布影响决定着LDPC码的解码效果和编码复杂度,但其分析较困难。为此,首次提出旋转距离分析法,用于分析基于Circulant矩阵构造的准循环低密度奇偶校验码(QC-LDPC码)的环分布,并给出了任何一个基于Circulant矩阵构造出的QC-LDPC码中的最小环长(girth)的上限(12)。同时,运用该方法,分析出一种权重为(3,5)的QC-LDPC码的译码效果与该码环分布的关系。由于LDPC码奇偶校验矩阵中的Circulant子矩阵,可以被当成1个矩阵节点的单一节点看待,从而简化了整个码的特纳图,使寻找QC-LDPC码中闭环的方法变得简单。

关键词: 准循环低密度奇偶校验码(QC-LDPC), Circulant 矩阵, 旋转距离分析, 最小环长, 环分布, 矩阵Tanner图

Abstract:

Cycle distribution of LDPC(Low-Density Parity-Check) codes affects the codes ,decoding performance and encoding complexity, however it is commonly NP hard to analyse.We propose the rotationdistance for analysis of QCLDPC(Quasi-Cyclic Low-Density Parity-Check) code based on circulant matrices. The circulant submatrices within the paritycheck matrix are treated as a “matrix node” to simplify theTanner graphs of the codes. Thus cycles of QC-LDPC codes can be found efficiently, and we demonstrate the usefulness of the new method by a simple proof of the known result that 12 is an upper limit of the girth of the QC-LDPC codes we considered. Moreover, the cycle analysis based on the new method also reveals relations between decoding performance and the cycle distribution of the code.

Key words: index termsQC-LDPC codes, circulant matrices, rotation distance amalysis, girth, cycle distribution, matrix tanner graph.

中图分类号: 

  • TN911.22