J4

• 论文 •    

非高斯平稳有界噪声激励下混沌系统动力学研究

衣文索1,于秀敏2a,石要武2b   

  1. 1长春大学 电子信息工程学院,长春 130026;2吉林大学 a.汽车工程学院;b通信工程学院,长春 130022
  • 收稿日期:2008-10-08 修回日期:1900-01-01 出版日期:2008-11-20 发布日期:2008-11-20
  • 通讯作者: 衣文索

Chaotic Dynamics Movement Under Invoke of Non-Gaussian Bounded Noise

YI Wen-suo1,YU Xiu-min2a,SHI Yao-wu2b   

  1. 1. Department of Electronic Information and Engineering, Changchun University,Changchun 130026,China;
    2aCollege of Automobile Engineering;2bCollege of Communication Engineering, Jilin University, Changchun 130022,China
  • Received:2008-10-08 Revised:1900-01-01 Online:2008-11-20 Published:2008-11-20
  • Contact: YI Wen-suo

摘要: 为解决信号检测理论在通讯、雷达、声纳、故障诊断等领域应用受限的问题,提出了随机Melnikov方法研究非线性系统在微弱周期信号和噪声信号联合摄动下的混沌运动行为,得到了微弱周期信号和非高斯平稳有界噪声信号联合摄动下的混沌运动特征。混沌的临界幅值与噪声强度的关系表明,在不强的非高斯平稳有界噪声背景下,有界噪声增大了激励阈值,混沌现象不容易产生。

关键词: 随机Melnikov过程, 非高斯平稳有界噪声, 混沌

Abstract: To address signal detection theory in communication, radar, sonar, fault diagnosis, and other restricted areas of application, put forward a random method of nonlinear Melnikov system and in weak signal noise signal cycle perturbation of the United chaotic motion, to be The cycle of weak signal and non-Gaussian noise signal smooth bounded joint perturbation of chaotic motion characteristics. Chaos and the amplitude of the critical relationship between the noise level shows that do not have a strong non-Gaussian smooth bounded noise, noise increases the incentive industry threshold, the chaos is not easy to produce.

Key words: non-Gaussion stable bounded noise, chaos, random Melnikov process

中图分类号: 

  • TN915.2