吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (2): 229-236.

• 论文 • 上一篇    下一篇

基于概率神经网络的汽车发动机失火故障诊断

  

  • 收稿日期:2015-07-28 出版日期:2016-03-24 发布日期:2016-06-17
  • 作者简介:王子健(1988—), 男, 吉林辽源人, 吉林大学硕士研究生, 主要从事发动机失火故障诊断研究, (Tel)86-18143093688 (E-mail)jidawzj@163. com; 王德军(1970—), 男, 内蒙古通辽人, 吉林大学副教授, 硕士生导师, 主要从事复杂系统故 障诊断及容错控制研究, (Tel)86-13604422573(E-mail)djwang@ jlu. edu. cn。
  • 基金资助:

    国家自然科学重点基金资助项目(61034001)

Engine Misfire Diagnosis Based on Probabilistic Neural Network

  • Received:2015-07-28 Online:2016-03-24 Published:2016-06-17

摘要:

为准确诊断汽车发动机常发生的单缸失火和双缸失火故障, 利用概率神经网络分析发动机转速与曲轴位移角度诊断发动机失火故障。在AMEsim 软件环境下搭建一款四缸发动机模型, 利用故障注入的方式模拟发动机失火, 提取发动机转速和曲轴角度位移数据, 在Matlab 环境下进行数据处理与分组, 建立概率神经网络PNN(Probabilistic Neural Network)进行训练与测试。实验结果表明, 发动机转速与曲轴转角位移能有效反应发动机真实运行情况, 训练好的PNN 可对发动机单缸、双缸失火进行准确的诊断和定位。该方法具有简洁、经济、高效和准确度高等优点。

关键词: AMEsim 发动机模型, 故障注入, 失火故障诊断, 概率神经网络

Abstract:

Due to the phenomenon of engine misfire in single cylinder and dual cylinders often occured in vehicles, PNN(Probabilistic Neural Network) was used to detect the engine misfire by analyzing the engine rotary velocity and crankshaft angular displacement. Under the circumstance of AMEsim software, we construct a kind of four cylinders in line engine and use the injecting approach to simulate engine misfire. Then, extract the engine velocity and crankshaft angular displacement, put these data in the Matlab software to process and classify them. A PNN for training and testing is established. The experiment results indicate that the engine rotary velocity and crankshaft displacement reflect the real operation condition of the engine, the tested PNN can diagnose and probe single cylinder or double cylinders misfire in the engine. This technique has series of advantages of simplicity, economy, efficiency and high accuracy.

Key words: AMEsim engine model, fault injection, misfire diagnosis, probabilistic neural network

中图分类号: 

  • TP183