芦冰a,b, 解小华a,b, 蔡可天a,b, 孟凡坤a,b
LU Binga,b, XIE Xiaohuaa,b, CAI Ketiana,b, MENG Fankuna,b
摘要:
为准确估计车辆的行驶速度, 保证汽车的安全性, 设计了基于无味卡尔曼滤波算法(UKF: Unscented Kalman Filter)的车速估计器, 并与基于卡尔曼滤波(KF: Kalman Filter)算法所建立的估计器进行了比较。两个估计器都以七自由度整车模型为研究平台, 同时在Matlab中搭建了UKF和KF的算法模型。仿真实验结果表明, 当系统输入产生突变时, UKF算法与真实值的绝对误差率始终在4%以内, 比KF算法的误差率大约降低了3%, UKF车速估计器能很好地预测车速变化的趋势, 相对于KF估计算法效果更佳。
中图分类号: