吉林大学学报(信息科学版) ›› 2014, Vol. 32 ›› Issue (1): 56-63.

• 论文 • 上一篇    下一篇

基于SIFT的UAV载组合宽角相机影像匹配方法

解斐斐1,2, 林宗坚1,2, 桂德竹3   

  1. 1. 武汉大学 遥感信息工程学院, 武汉 430079; 2. 中国测绘科学研究院 重点实验室, 北京 100039;3. 国家测绘局 测绘发展研究中心, 北京 100830
  • 收稿日期:2013-08-28 出版日期:2014-01-24 发布日期:2014-04-03
  • 作者简介:解斐斐(1983—), 女, 山东青岛人, 武汉大学博士研究生, 主要从事低空无人飞行器摄影测量研究, (Tel)86-13954287095(E-mail)xiefeifei_007@163.com; 林宗坚(1943—), 男, 福州人, 中国测绘科学研究院教授, 博士生导师, 主要从事低空无人飞行器遥感系统遥感影像的信息量与不确定性分析研究(Tel86-13901013594(E-mail)lincasm_casm@ac.cn。
  • 基金资助:

    国家863计划重点基金资助项目(2008AA121305);国家自然科学基金资助项目(41071286; 41371425)

Image Matching Method Based on SIFT for UAV Images from Combined Large Frame Camera

XIE Fei-fei1,2, LIN Zong-jian1,2, GUI De-zhu3   

  1. 1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;2. Key Laboratory, Chinese Academy of Surveying and Mapping, Beijing 100039, China;3. Development Research Center for Surveying & Mapping, State Bureau of Surveying & Mapping, Beijing 100830, China
  • Received:2013-08-28 Online:2014-01-24 Published:2014-04-03

摘要:

针对无人驾驶飞机UAV(Unmanned Aerial Vehicle)航空组合相机获取的大像幅影像旋偏角较大、 大尺度变化和颜色差异明显的问题, 提出基于极几何和单应约束的SIFT(Scale Invariant Feature Transform)特征多尺度LSM(Least Squares Matching)算法。该算法顶层金字塔影像采用SIFT快速匹配, 对匹配结果利用改进的RANSAC(Random Sample Consensus)算法计算影像间单应矩阵和基本矩阵; 对影像进行Harris特征提取, 根据极几何和单应约束采用双向一致性相关系数算法进行密集匹配; 通过更新单应矩阵, 设定阈值删除误匹配点; 对匹配的同名点进行最小二乘匹配获取子像素级精度。通过对具有较大旋偏角、 大尺度变化和颜色差异的3组实际航摄影像的试验对比表明, 与传统方法相比, 该算法具有较高的匹配成功率和较好的有效性。

关键词: 无人驾驶飞机, 影像匹配, SIFT特征, RANSAC算法, 几何约束

Abstract:

In order to solve the problems in the characteristics of UAV(Unmanned Aerial Vehicle) image with large frame, i.e., large rotation angle, large difference in scales an
d color difference, a matching method named multi-scale LSM(Least Squares Matching) algorithm based on SIFT (Scale Invariant Feature Transform) features with epipolar and homography constraints, which can improve the matching success rate is designed. On the top pyramid images, SIFT image matching is done to obtain matching points. The homography matrix and basic matrix are calculated with the matching points by the improved RANSAC(RANdom SAmple Consensus) algorithm. And the harris feature extraction is used to obtain many feature points. According to epipolar and homography constraints two-dimensional concordance correlation coefficient algorithm is used to dense stereo matching. The homography matrix is updated for deleting false matching points by setting threshold. Corresponding image points are used to obtain sub-pixel accuracy by LSM. Based on three groups of comparative tests with actual aerial photograph images, i.e., images with large rotation angle, lager different scales and color difference, it is proved that this method is effective.

Key words: unmanned aerial vehicle (UAV), image matching, scale invariant feature transform(SIFT) feature, random sample consensus(RANSAC), geometrical constraint

中图分类号: 

  • TP753