吉林大学学报(信息科学版)

• 论文 • 上一篇    下一篇

基于改进粒子滤波的锂离子电池RUL 预测

刘亚姣1, 刘振泽1, 宋晨辉2   

  1. 1. 吉林大学通信工程学院, 长春130022; 2. 东北大学信息科学与工程学院, 沈阳110819
  • 收稿日期:2017-12-19 出版日期:2018-03-24 发布日期:2018-07-25
  • 作者简介:刘亚姣(1992—), 女, 河北张家口人, 吉林大学硕士研究生, 主要从事系统建模、自动化研究, (Tel)86-15662173006(E-mail)liuyajiao0824@163. com; 刘振泽(1978—), 男, 长春人, 吉林大学副教授, 硕士生导师, 主要从事复杂系统建模、优化与控制研究, (Tel)86-13504464339(E-mail)liuhaozz@126. com。
  • 基金资助:
    吉林省科技发展计划基金资助项目(20100184)

Improved Particle Filter Algorithm for RUL Prediction

LIU Yajiao1, LIU Zhenze1, SONG Chenhui2   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;2. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2017-12-19 Online:2018-03-24 Published:2018-07-25
  • Supported by:
     

摘要: 在基于粒子滤波算法的锂离子电池剩余使用寿命预测过程中, 由于基本粒子滤波算法存在粒子退化问题, 难以保证电池寿命预测的精度。为此, 提出一种基于MCMC(Monte Carlo Markov Chain)的无迹粒子滤波改进算法, 从选取适当的重要性密度函数和重采样过程两方面入手, 更全面地克服基本粒子滤波算法中的粒子退化问题, 进而提高锂离子电池剩余使用寿命预测的精度。实验仿真结果表明, 改进后的粒子滤波算法能更好地跟踪电池容量衰退趋势, 预测精度也明显优于基本粒子滤波算法, 为锂离子电池剩余使用寿命的预测提供了新思路。

关键词: 锂离子电池, 剩余使用寿命, 粒子滤波, Monte Carlo Markov 链, 粒子退化, 无迹粒子滤波

Abstract: In the process of predicting, the remaining useful life of Lithium-ion batteries is based on particle filter algorithm. The fundamental particle filter algorithm has the problem of particle degeneration and it is difficult to ensure the accuracy of the remaining useful life prediction, so an improved unscented particle filter algorithm based on MCMC (Monte Carlo Markov Chain) is proposed. This algorithm overcomes the problem of particle degeneration by selecting the appropriate importance density function and resampling strategy, and improves the accuracy of the remaining useful life prediction. The simulation experiment shows that the improved particle filter algorithm can track the decline trend of battery capacity better and achieve higher precision than the fundamental particle filter algorithm,which can provide a new idea for predicting the remaining useful life of Lithium-ion batteries.

Key words: lithium-ion batteries, the remaining useful prediction, particles degeneracy, Monte Carlo Markov Chain (MCMC), particle filter, unscented particle filter

中图分类号: 

  • TP206