刘亚姣1, 刘振泽1, 宋晨辉2
LIU Yajiao1, LIU Zhenze1, SONG Chenhui2
摘要: 在基于粒子滤波算法的锂离子电池剩余使用寿命预测过程中, 由于基本粒子滤波算法存在粒子退化问题, 难以保证电池寿命预测的精度。为此, 提出一种基于MCMC(Monte Carlo Markov Chain)的无迹粒子滤波改进算法, 从选取适当的重要性密度函数和重采样过程两方面入手, 更全面地克服基本粒子滤波算法中的粒子退化问题, 进而提高锂离子电池剩余使用寿命预测的精度。实验仿真结果表明, 改进后的粒子滤波算法能更好地跟踪电池容量衰退趋势, 预测精度也明显优于基本粒子滤波算法, 为锂离子电池剩余使用寿命的预测提供了新思路。
中图分类号: