吉林大学学报(信息科学版) ›› 2014, Vol. 32 ›› Issue (3): 223-228.

• 论文 •    下一篇

基于分级策略的自动人眼检测与定位

李栋1,2, 田彦涛1, 刘帅师3   

  1. 1. 吉林大学 通信工程学院, 长春 130022; 2. 吉林省计量科学研究院 质量保证部, 长春 130000;3. 长春工业大学 电气工程学院, 长春 130021
  • 收稿日期:2014-01-28 出版日期:2014-05-24 发布日期:2014-07-18
  • 作者简介:李栋(1979—), 男, 吉林通化人, 吉林省计量科学研究院工程师, 吉林大学博士研究生, 主要从事模式识别研究, (Tel)86-13578929588(E-mail)lidong0726@126.com; [HT6H]通讯作者[HT6SS]: 田彦涛(1958—), 男, 吉林四平人, 吉林大学教授, 博士生导师, 主要从事控制科学与工程研究, (Tel)86-13844889256(E-mail)tianyt@jlu.edu.cn。
  • 基金资助:

    吉林省科技发展计划重点基金资助项目(20071152);青年科研基金资助项目(20140520065JH)

Automatic Eyes Detection and Localization Based on Hierarchical Scheme

LI Dong1,2, TIAN Yantao1, LIU Shuaishi3   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130022, China;2. Department of Quality Assurance, Jilin Institute of Metrology, Changchun 130000, China;3. College of Electrical Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2014-01-28 Online:2014-05-24 Published:2014-07-18

摘要:

 为了能在正面人脸图像上对人眼位置进行检测和精确定位, 提出了一种新颖高效的分级策略。利用Gabor变换计算显著极值图, 得到若干具有最大显著极值的候选人眼区域; 通过PCA(Principal Component Analysis)重构对候选区域进行验证, 将具有最小重构误差的两个区域选定为眼睛区域; 通过两级邻域运算对瞳孔进行精确定位。该方法对面部表情变化不敏感, 同时具有非迭代和计算简单的优点。通过在JAFFE数据库上的对比实验, 检测精度达到99.6%, 验证了该方法的有效性。

关键词: 人眼检测, 显著极值, PCA验证, 邻域运算

Abstract:

We propose a novel and efficient hierarchical scheme, which can locate the accurate positions of the eyes from frontal face images. First, Gabor transform is used to calculate the salient map and a number of rectangular regions with the maximum saliency values are selected as the coarse eye region candidates for further verification. Second, the two eye windows with the minimum PCA(Principal Component Analysis) reconstruction errors among the eyecandidate regions are selected. Finally, the pupil centers are localized by applying two neighborhood operators within the eye windows. The proposed algorithm is non-iterative, computationally simple and robust to different facial expressions. Experimental results on JAFFE database show that this algorithm can make the detection accuracy of 99.6%, and can achieve a superior performance compared to other state of the art methods.

Key words: eyes detection, saliency values, principal component analysis(PCA)based verification, neighborhood operators

中图分类号: 

  • TP391