吉林大学学报(信息科学版) ›› 2014, Vol. 32 ›› Issue (3): 288-292.

• 论文 • 上一篇    下一篇

改进的快速C-V模型指静脉图像分割算法

郭树旭, 李枭, 朱麒, 张明阳   

  1. 吉林大学 电子科学与工程学院, 长春 130012
  • 收稿日期:2013-12-21 出版日期:2014-05-24 发布日期:2014-07-18
  • 作者简介:郭树旭(1959—), 男, 长春人, 吉林大学教授, 博士生导师, 主要从事图像处理与分析研究, (Tel)86-431-85168123(E-mail)guosx@jlu.edu.cn; 通讯作者: 李枭(1992—), 男, 山东泰安人, 电子科学与工程学院本科生, 主要从事图像处理与分 析技术的应用研究, (Tel)86-18204315535(E-mail)345802027@qq.com。

Improved and Rapid C-V Model of Finger Vein Image Segmentation Algorithm

GUO Shuxu, LI Xiao, ZHU Qi, ZHANG Mingyang   

  1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2013-12-21 Online:2014-05-24 Published:2014-07-18

摘要:

为快速准确地进行指静脉图像的分割, 在经典C-V模型的基础上, 增加了距离惩罚项和边缘检测函数, 并使图像演化不基于内部区面积。改进后的算法保留了C-V模型全局优化的特性, 同时有效避免了重新初始化过程, 并对图像边缘更加敏感, 使改进后的算法适合对指静脉图像的分割。仿真实验结果表明, 改进后的C-V模型能较好地处理指静脉图像边界模糊和灰度分割不均的问题, 同时还可提升分割效率。

关键词: C-V模型, 距离惩罚项, 边缘检测函数, 指静脉图像, 图像分割

Abstract:

Finger vein image has a low contrast and polarization characteristics and traditional segmentation algorithms can not solve these problems. C-V model contains the global information of the image, it can detect weak edge information. This article improves based on the classical model of the C-V model, increases the distance penalty term and edge detection function for fast and accurate finger vein image segmentation, it also solves the problem of uneven distribution of gray which the classical CV model could not solve. The improved algorithm preserves the characteristics of global optimization C-V model while effectively avoiding the re-initialization process, and it is more sensitive to edge. The simulation results show that the improved C-V model is better able to deal with the problem of fuzzy boundaries and uneven gray, it also can improve the efficiency of segmentation.

Key words: C-V model, distance penalty term, edge detection function, finger vein image, image segmentation

中图分类号: 

  • TN919