吉林大学学报(信息科学版) ›› 2014, Vol. 32 ›› Issue (3): 321-327.

• 论文 • 上一篇    下一篇

基于交通视频的运动车辆检测方法

马卫强   

  1. 吉林铁道职业技术学院 实训与教育技术中心, 吉林 吉林 132002
  • 收稿日期:2014-01-08 出版日期:2014-05-24 发布日期:2014-07-18
  • 作者简介:马卫强(1974—), 男, 天津人, 吉林铁道职业技术学院副教授, 主要从事汽车检测与维修及多媒体技术研究, (Tel)86-13844214441(E-mail)mwq36979@sina.com。
  • 基金资助:

    双轨路形计系统研制基金资助项目(3R110X441419)

Moving Vehicles Detection Algorithm Based on Transportation Videos

MA Weiqiang   

  1. Training and Educational Technology Center, Railway Vocational and Technology College, Jilin 132002, China
  • Received:2014-01-08 Online:2014-05-24 Published:2014-07-18

摘要:

为解决交通测试系统中车辆实时跟踪和分割的问题, 以数字图像处理方法为手段, 针对采集到的交通路况信息, 重点研究了背景差分算法提取运动车辆, 并提出了一种计算量较小的自适应背景更新算法; 采用一种工作在HSV(Hue, Saturation, Valve)空间非基于模型的车辆阴影检测算法, 并提出设置阈值参数的方法, 在去除车辆阴影的同时也滤除了行人、 自行车及摩托车等干扰; 针对车辆阴影检测后的二值化图像, 采用适合的形态学方法进行后期处理。对实际交通环境下的大量视频和图像进行测试的结果表明, 该方法可以有效地实现运动车辆的检测。

关键词: 车辆检测, 背景差分, 背景更新, 车辆阴影

Abstract:

In order to solve the problems of real\|time vehicle tracking and separation in the traffic test system, using digital image processing method, a moving vehicles detection algorithm based on transportation videos is proposed. For the obtained traffic test information, the research focuses on the background subtraction algorithm to extract moving vehicles. A method of adaptive background updating algorithm with smaller amount of calculation is proposed and a nonmodel-based approach working in HSV(Hue, Saturation, Valve) space is used to detect vehicle shadow. Through setting the proper threshold parame
ters, we can remove vehicle shadow and remove disturbances of pedestrian, bicycle and motorcycle vehicle at the same time. After the shadow detect
ion, some suitable morphological methods are used for post processing. Based on large number tests of real traffic environment video and images, the proposed method is proved to be effective for moving vehicles detection.

Key words: vehicle detection, background subtraction, background updating, vehicle shadow

中图分类号: 

  • TP391