吉林大学学报(信息科学版) ›› 2015, Vol. 33 ›› Issue (1): 84-93.
霍凤财, 孙宝翔, 任伟建
HUO Fengcai, SUN Baoxiang, REN Weijian
摘要:
为快速准确地将图像背景与目标进行有效分割, 提出了一种基于图像阈值分割的量子改进蜂群算法(IABCQ: Improved Artificial Bee Colony Algorithm Based on Quantum)。该算法将量子比特概率幅的正弦分量引入到蜂群算法的编码中, 通过调整相位角更新量子比特概率幅, 使蜂群算法中引领蜂向当前最优蜜源的方向移动, 避免算法搜索的盲目性; 借鉴量子运算中非门操作将个体的正弦和余弦分量互换, 使跟随蜂的蜜源进行互补更新;应用蜂群算法更新个数的限制, 避免了局部优解和不动点引起的个体不更新问题。通过不同类型图像和算法之间的比较表明, 该改进蜂群算法应用到图像阈值分割中的收敛时间减少了20%左右, 同时也表现出良好的稳定性和抗噪声能力。
中图分类号: