吉林大学学报(信息科学版) ›› 2015, Vol. 33 ›› Issue (1): 84-93.

• 论文 • 上一篇    下一篇

基于图像阈值分割的改进蜂群算法

霍凤财, 孙宝翔, 任伟建   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2014-08-27 出版日期:2015-01-24 发布日期:2015-03-20
  • 作者简介:霍凤财(1976—), 男, 黑龙江安达人, 东北石油大学副教授, 博士研究生, 硕士生导师, 主要从事智能算法和图像处理研究, (Tel)86-13936895698(Email)huofc@126.com;任伟建(1963—), 女, 黑龙江泰来人, 东北石油大学教授, 博士, 博士生导师, 主要从事智能算法及故障诊断研究,(Tel)86-13845901386(E-mail)renwj@126.com。
  • 基金资助:

    国家自然科学基金资助项目(61374127); 中国石油科技创新基金资助项目(2012D50060205; 2013D50060209); 黑龙江省博士后科研启动基金资助项目(LBHQ12143); 东北石油大学青年基金资助项目(2013NQ105)

Improved Artificial Bee Colony Algorithm Based on Image Threshold Segmentation

HUO Fengcai, SUN Baoxiang, REN Weijian   

  1. Department of Electrical Information Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2014-08-27 Online:2015-01-24 Published:2015-03-20

摘要:

为快速准确地将图像背景与目标进行有效分割, 提出了一种基于图像阈值分割的量子改进蜂群算法(IABCQ: Improved Artificial Bee Colony Algorithm Based on Quantum)。该算法将量子比特概率幅的正弦分量引入到蜂群算法的编码中, 通过调整相位角更新量子比特概率幅, 使蜂群算法中引领蜂向当前最优蜜源的方向移动, 避免算法搜索的盲目性; 借鉴量子运算中非门操作将个体的正弦和余弦分量互换, 使跟随蜂的蜜源进行互补更新;应用蜂群算法更新个数的限制, 避免了局部优解和不动点引起的个体不更新问题。通过不同类型图像和算法之间的比较表明, 该改进蜂群算法应用到图像阈值分割中的收敛时间减少了20%左右, 同时也表现出良好的稳定性和抗噪声能力。

关键词: 阈值分割, 量子, 概率幅, 蜂群算法

Abstract:

The image segmentation threshold is acquired to use gray level images information of pixels and histogram in order to segment between backgrou
nd and objects quickly and accurately. An IABCQ(Improved Artificial Bee Colony Algorithm Based on Quantum) in image threshold segmentation is proposed based on the quantum operation and basic ABC(Artificial Bee Colony) algorithm's mechanism. Firstly, this novel algorithm brings qubits probability amplitude's sinusoidal component into the encoding, then adjust the phase angle to update the qubits probability amplitude, which makes the employed bees move to the optimal nectar source to avoid the algorithm's search blindness. Secondly, the chromosomes sine and cosine components are exchanged by quantum non gate so that followed bees nectar source can update complementarily. Thirdly, the limitation in the artificial bee colony is applied so as to avoid the local optimal solutions and fixed point. Finally, many types of images and algorithms comparison can verify that convergent speed of this novel method in image threshold segmentation is reduced about 20% and this algorithm has good stability and anti-noise ability.

Key words: threshold segmentation, quantum, probability amplitude;bee colony algorithm

中图分类号: 

  • TP391.4