吉林大学学报(信息科学版) ›› 2016, Vol. 34 ›› Issue (2): 166-174.

• 论文 • 上一篇    下一篇

自适应径向道TFPF 压制地震记录随机噪声

曹善舒, 李月, 吴宁   

  1. 吉林大学通信工程学院, 长春130012
  • 收稿日期:2015-12-14 出版日期:2016-03-24 发布日期:2016-06-17
  • 作者简介:曹善舒(1991—), 男, 山东临清人, 吉林大学硕士研究生, 主要从事地震勘探信号处理研究, (Tel)86-13944154679 (E-mail)caoss13@ mails. jlu. edu. cn; 通讯作者: 李月(1958—), 女, 长春人, 吉林大学教授, 博士生导师, 主要从事地震勘探信号处理、微弱信号检测研究, (Tel)86-13019132816(E-mail)liyue@ jlu. edu. cn。
  • 基金资助:

    国家自然科学重点基金资助项目(41130421); 国家自然科学基金资助项目(41304085)

Self-Adaptive Radial-Trace TFPF for Seismic Random Noise Attenuation

CAO Shanshu, LI Yue, WU Ning   

  1. College of Communication Engineering, Jilin University, Changchun 130012, China
  • Received:2015-12-14 Online:2016-03-24 Published:2016-06-17

摘要:

针对传统时频峰值滤波(TFPF: Time-Frequency Peak Filtering)未考虑地震信号记录道与道之间的相关性以及径向道TFPF 未考虑实际同相轴走向的问题, 在假设反射同相轴局部线性的基础上, 提出自适应径向道时频峰值滤波算法。该算法利用自适应函数获取局部区域内同相轴的走向, 通过径向道变换(RTT: Radial-Trace
Transform)将同相轴拉伸到径向道域, 提高其线性度, 更好地满足TFPF 无偏估计的条件, 减小因信号非线性引起的估计误差。实验结果表明, 该方法在随机噪声压制和有效信号恢复方面都取得了更好的效果。相同窗长下, 该算法相比传统TFPF 信噪比提高了5 dB 左右, 相比径向道TFPF 信噪比提高了3 dB 左右。

关键词: 时频峰值滤波, 径向道变换, 自适应函数, 窗长, 随机噪声

Abstract:

Aiming at the issues that the conventional TFPF(Time-Frequency Peak Filtering) doesn't consider the correlation between seismic channels and the radial-trace TFPF doesn't consider the real direction of the reflected event and the reflected event is locally linear, we propose self-adaptive radial-trace Time-frequency peak filtering. The new method finds the direction of the reflected event in the local area by utilizing the self-adaptive function and maps the event to radial-trace area along the direction by RTT(Radial-Trace Transform), and can improve the linearity of the signal. Consequently, it is more close to the unbiased TFPF and can reduce the error caused by the low linearity. Experiment results indicate that this method can provide better performance in both
random-noise attenuation and reflected signal preservation. When selecting same window length, the method can increase the SNR(Signal-to Noise Ratio) by 5 dB more than traditional TFPF and 3 dB more than radial-trace TFPF.

Key words: time-frequency peak filtering (TFPF), radial-trace transform (RTT), self-adaptive function;window length (WL), random noise

中图分类号: 

  • TN911. 73