张冰冰, 史东承, 梁超
ZHANG Bingbing, SHI Dongcheng, LIANG Chao
摘要:
为解决人体动作识别中由于特征描述子的维数过高, 无法表征目标变化的本质运动变化信息的问题,给出了核主成分分析(KPCA: Kernel Principal Component Analysis)对局部运动模式描述子(LMP: Local Motion Pattern)降维方法。首先利用LMP 描述子对人体运动目标进行描述, 然后利用KPCA 算法对局部运动模式特征 描述子进行处理, 获取新的特征描述方式。通过MATLAB 仿真, 与Cuboids+SVM 和LMP+SR 两种算法对比结果表明, 基于LMP鄄KPCA 的人体动作识别, 特征描述子维数明显降低, 可以表征人体运动目标变化关键信息,识别率比Cuboids+SVM 算法提高1. 1%, 比LMP+SR 提高1%。
中图分类号: